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Abstract: Fault detection and diagnosis are important technologies for the safe and 
efficient operation of a chemical plant. This paper describes a sensor fault 
identification approach using variable reconstruction for dynamic systems. The 
proposed methodology extends sensor fault reconstruction for Canonical Variate 
Analysis based process performance monitoring which admits process dynamic 
behaviour in a natural way, and evaluates its capabilities compared to a dynamic 
PCA approach using a mathematical benchmark problem and a simulation of a 
closed loop controlled CSTR previously used for studying both simple and complex 
faults. Copyright © 2007 IFAC 
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1.  INTRODUCTION 

The underlying multivariate statistical process 
control (MSPC) methodologies of Principal 
Component Analysis (PCA) and Projection to Latent 
Structures (PLS) and their application for process 
monitoring and fault detection are equally applicable 
to continuous and batch processes and have been 
investigated by a number of researchers including 
Kosanovich & Piovoso, (1995), Kourti et al, (1995), 
Kourti & MacGregor (1996) and Martin & Morris 
(2002). However, PCA and PLS provide static 
models which assume that the process operates at a 
predefined steady-state condition. This is often not 
the case as the process may undergo throughput 
changes, which result in dynamic transients of the 
process variables. Dynamic process modeling has 
been proposed for process monitoring. For example, 
Ku et al., (1996) proposed dynamic PCA where a 
linear time–series relationship is incorporated into 
the conventional PCA analysis, where a general set 
of physical process variables is arranged to represent 

an ARX model structure. Negiz and Cinar (1997) 
introduced the use of Canonical Variate Analysis 
(CVA) state space models for MSPC to incorporate 
process dynamics and Simoglou et al, (2002) 
extended the application of CVA to the modeling 
and monitoring of a continuous polymerization 
process. Dynamic models relate the present and 
future behaviour of a plant to the history of the 
inputs and outputs. The structure of a dynamics 
model is greatly influenced by the nature of the data 
and the objective for which the dynamic models are 
being built.  The statistical projection methods of 
PCA and CVA generate orthogonal principal 
components and canonical variates respectively, 
from correlated data. In process monitoring 
applications, PCA and CVA use historical normal 
operating data to build two subspaces known as 
model and residual subspaces. The squared 
Mahalanobis distance in the model subspace (T2

statistic) and the squared Euclidean distance in the 
residual subspace (Q statistic) are used as monitoring 
indices. Since the first few latent variables contain 

Preprints Vol.1, June 6-8, 2007, Cancún, Mexico

267



most of the data information on the correlations 
among process measurements, only a few PCs or 
CVA states are required to detect and identify most 
types of sensor fault.   

Process operators obtain information on the current 
state of the process from a range of sensors, thus, the 
accuracy and robustness of sensors is crucial to 
successful process control and monitoring. 
Consequently, the ability to detect and identify a 
sensor fault is very essential. A range of methods for 
fault detection and isolation (FDI) have been 
proposed. In general these methods can be classified 
into three categories: analytical redundancy, 
knowledge-based methods and measurement 
aberration detection (Ying et al., 2000). In general, 
faults can occur either in the actuator or sensors, or 
in one of the unit operations within a process.  One 
of the most widely applied methods to help identify 
the combination of variables reflective of non-
conforming operation in MSPC is the contribution 
plot method (Miller et al., 1998). Such an approach 
is based on defining the contribution of the 
individual variables to the principal component 
score, or residual, for the non-conforming sample. 
Those variable(s) providing the largest contribution 
are considered to be indicative of the fault. In 
addition several reconstruction-based identification 
methods have been proposed. Dunia et al., (1996) 
developed a method for identifying faulty sensors 
that uses PCA-based reconstruction via iterative 
substitution, optimization and sensor validity index 
(SVI). They defined several types of residual and 
theoretically predicted the effect on each residual 
when various types of sensor faults are propagated. 
More recently, Lee et al., (2004) extended this fault 
identification concept based on the reconstruction 
error to dynamic process diagnosis.   

Dynamic models based on PCA, e.g. DPCA (Ku et
al., 1996) involve a large number of variables and do 
not provide an exact description of the process 
dynamics. CVA has been shown to be superior to 
other projection techniques in term of parsimonious 
capturing the auto and cross correlation of process 
data (Simoglou et al., 2002). This paper contributes 
to the ongoing discussion on sensor fault 
identification using variable reconstruction in 
dynamic systems.  

2. PROCESS MONITORING BASED ON CVA 

CVA is a multivariate statistical technique that is 
receiving increasing attention for the development of 
models for linear systems. In CVA, the orthogonal 
basis is selected as those linear combinations of a 
data set (the past outputs, p) that are most predictive 
of the future outputs of the process, f):
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With the state space model identified using CVA  
taking the following form: 

ttt WXX 1
(3) 

tttt VHXY (4) 

With knowledge of the canonical states and the plant 
data, the state space matrices and H and the noise 
covariance matrix )WW(Q t

k
tE  and 

)VV(R t
T
tE  can be computed using least-squares 

regression. In this representation, Xt denotes the 
states, Yt, the outputs. Wt describes the state or 
process noise, and Vt represents the measurement 
noise. The CVA model states are calculated by 
means of projecting the past vector )(kp ,at time k,
on the loading matrix, J . Details on how to 
calculate the loading matrix can be found in 
Simoglou et al., (2002). It follows that the system 
states, kX are calculated as follows: 

KAK pJX              (5) 
where A is number of the retained states. Once the 
CVA model has been built, and the states identified, 
Simoglou, et al., (2002) proposed the application of 
Hotelling’s T2 and SPE as the basis of the 
performance monitoring charts. The T2 statistic is 
developed from the k CVA retained latent variables: 

T
ktkktT ,, XSX 12              (6) 

where Xt,k is the kth retained state and Sk is the 
corresponding covariance matrix. The SPE is given 
by: 

k
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Simoglou et al., (2002) defined a number of metrics 
for monitoring the CVA states including the 
application of Hotelling’s T2 to the state space 
residuals, the excluded latent variables and the 
measurement residuals.  

3. MSPC BASED FAULT DIAGNOSIS 

One of the most commonly used methods to help 
identify the groups of variables responsible for non-
conforming operation in MSPC is the contribution 
plot method (Miller et al., 1998). It is based upon 
defining the contribution of the individual variables 
to the monitoring statistics obtained from a non-
conforming sample. The variables providing the 
largest contribution are regarded as indicative of the 
fault. In the case of the process deviation in the 
model space, the T2 contribution plot is used to 
identify faults. Process variable indicative of the out-
of-control T2 signal can be isolating by examining 
their contributions to the sum of squared normalized 
principal components scores, i.e., T2 value: 
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Here, the contribution of each variable j at time k,
ynew,jk to the T2 is calculated. S-1 is the inverse of the 
covariance matrix of the CVA states, X. The 
contribution is summed over all A latent variable or 
states, x. By plotting each variable contribution in a 
bar chart, the variables with significantly large 
contribution values are considered responsible for a 
fault.  In case of the process deviation from the 
model space, the Q contribution plot should be 
applied to identify the causal variables. The 
contribution to Hotelling’s T2 and the Q statistic can 
be calculated as follows, for a new observation 
vector yt, the past vector at time, t and t-1 is given as 
follows: 

]y[yp lttt 11            (9) 
]y[yp 1lttt                        (10) 

1ttt Jp.pw                        (11) 

where J is the past loading matrix of the CVA 
model. Equation (10) can be written as follows so 
that the state space at every lag is calculated:  

tltlltl yyy 0BBBw 11         (12) 

by summing the contribution of each variable for all 
lags, Equation 11 can be written as follows: 
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The contribution of the variables to the state space 
residuals can be summarized as follows: 
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which can be further simplified as: 
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Hence the contributions to the Q-statistic are as 
follows: 
        wwTQ yDDy TT ~~  (16) 
Thus, the contribution of each variable to the Q
statistic is each element of the summation defined in 
equation (16).  

The contribution plot is an efficient diagnostic tool to 
identify the responsible variables for a process 
deviation. Tong and Crowe, (1995) in a study on data 
reconciliation, described how the presence of a 
sensor fault can propagate to the other variables 
through model reconstruction, resulting in the 
incorrect estimation of the other variables. This can 
lead to erroneous conclusions in terms of fault 
identification. Wise and Ricker, (1991) proposed a 
PLS model to reconstruct a sensor using other 
measurements to eliminate the effect of fault sensor. 
Dunia et al, (1996) developed a method for 
identifying faulty sensors that uses PCA-based 
reconstruction via iterative substitution, optimization 
and SVI. The basic assumption of their argument is 

that the effect of a sensor fault is not propagated to 
the other sensors. Once a fault has been detected 
from the Q statistic, each variable is reconstructed in 
turn using the data missing value estimation method. 
This SVI based identification method provides the 
satisfactory sensor fault identification only if the 
faults can be detected in the residual space, because 
it considers only model residuals. In this aspect, if a 
sensor fault can be detected in the model space, SVI 
cannot identify the faulty sensor. Yue & Qin, (2001), 
developed a reconstruction based fault identification 
approach using a combined index for fault 
reconstruction and identification. Their approach has 
shown to be powerful in detecting faults in systems 
with the strong correlation among sensors.   

4.   RECONSTRUCTION OF FAULTY SENSORS 
IN DYNAMIC PROCESSES 

Equation 1, can be estimated by projection to the 
model space (c.f. Simoglou et al., 2002): 
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T
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where A
T
AJJ  and the subscript K denotes to 

maximum lag in the past vector. For example a 
matrix lagged by one point can be given as follows:  

TTT )(y)(yp 101 , and its projection matrix 
can be represented as: 

A2
11 pp̂ , where 1p̂  is the estimate of the 

past matrix and  is the projection matrix which 
can be given as: 
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AAAi
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The ith variable in 
TTT )(y)(yp 101  can be 

reconstructed as follows: 
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Since relationships (19) and (20) always converge 
(Dunia et al., 1996), the values 

ii )(ŷ)(ŷ 1and0 can be estimated using the 
following relationship: 
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where 
AiAiAii

iAiiiR
i
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       (22) 

and I AA 22 is identity matrix. Equation (21) can 
easily be extended to matrices lagged by l-time 
points. Thus projection matrix l , Equation 7.19, 
can be extended and represented as: 

AlAliil )( 11          (23) 

Then the reconstruction matrix G  for the ith 
variable of the past matrix can be defined as: 
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By simplifying the above equation: 
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Here I is the identity matrix. Recalling Equations 11-
16, the state space residuals can be estimated and the 
Q-statistic can be calculated. The reconstructed Q-
statistic is given by ŷ~DDŷ~ŵŵ ## TTTQ . The 
‘dynamic’ sensor validity index based on CVA is 
then: 
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where #Q is the reconstructed Q-statistic and, Q is 
the inherent Q-statistic.

5.   APPLICATION STUDIES AND RESULTS 

This section presents an application of the proposed 
dynamic SVI to two simulated processes with 
dynamic characteristics: a simulated single input-
multiple output (SIMO) example and a simulated 
CSTR polymerization process. The performance of 

CVA based SVI is compared with that of dynamic 
PCA and static PCA.  

5.1 Simulated dynamic process 
The dynamic system described in this section 
consists of a single-input multiple-output (four 
variables). The system is expressed as follows: 
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where )(x)(y),( tandttu are the input, output and 
state variables respectively. Measurement noise 

)(to was added to each output variable. The 
simulated noise is iid Gaussian noise with zero mean 
and variance of 0.01. The process input was excited 
using the following summation of 10 sine waves 

with different frequencies
10

1
39980

j
jttu ).sin()( .

Thus, the measurement of this system would be a 
linear combination of the sine wave and is 
characterized by autocorrelation and cross-
correlation (Li and Qin, 2001).  In this example 500 
samples corresponding to the process under normal 
conditions were generated for model building. A 
further 400 test samples were generated. The sensor 
fault was simulated at time point, t=151 and 
continues to the end of the simulation. The first fault 
considered was sensor degradation. The degradation 
of the sensor was generated by adding noise with 
zero mean and variance of 1.5 to the normalised 
measurement from the second sensor. A static PCA 
model using 2 principal components, explaining 82% 
of the variability of the data, was constructed. Dunia 
et al., (1996) studied the effect of filtering the 
residuals as well as the validity index. They showed 
that using exponential weighted moving average 
filter (EWMA) will improve the fault detection and 
the fault isolation as the variance of the noise will be 
reduced. Furthermore, the application of EWMA for 
the Q-statistic and SVI reduces the false alarms.  

Fig. 1a shows the EWMA-Q-statistic chart for PCA 
model. The Q-statistic index was filtered using an 
exponentially weighted moving average (EWMA) to 
allow robust detection of sensor fault. As can be seen 
from Fig. 1a the fault was detected at time 151 with 
the value of the Q-statistic (red solid line – 99% 
confidence limit) moving in and out of the in-control 
region. Fig. 1b shows the SVI index (purple dashed -
dot horizontal line) for the individual variables where 
it can be observed that the faulty sensor (solid red 
line), cannot be clearly identified to be faulty.  It is 
noted that in all the multi-variable plots, the key 
variables are all referenced by line type and colour 
with the remaining variables plotted in black.  
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Fig. 1a: EWMA-Q chart for fault detection using 
PCA, forgetting factor = 0.1 

Fig. 1b: SVI chart for fault isolation using dynamic 
PCA, forgetting factor = 0.1 

A dynamic PCA model was also identified. Here, 
four principal components are used in the model 
explaining 74% of the variability in the data. Fig. 2 
shows the performance of DPCA to detect and 
isolate the fault.  In the case of the CVA model, 4 
time lags were used and the model order determined 
by Akaike Information Criterion (AIC). Four 
statistical states were chosen explaining 80% of the 
variability of the past vector. As can be observed in 
Fig. 3, CVA not only gave fast fault detection but 
more reliable sensor fault identification. This 
emanates from the fact that the dynamic sensor 
validation index based on CVA takes into account 
process measurement dynamics that is captured by 
the CVA model. 

5.2 Application to a first order reaction in a CSTR 
A non-isothermal CSTR was used to demonstrate the 
performance of the sensor validation proposed index. 
A more detailed description of the process is given 
by Yoon and MacGregor, (2001, 2004). A total of 
450 samples were generated under normal operating 
conditions to build the nominal PCA model.  In the 
first simulation, the process was operating under 
normal conditions up to the 49th sample point. From 
the 50th sampling point until the end of the 
simulation the values of the second sensor (the inlet 
jacket temperature) took a constant value of 20K. 
This fault scenario indicates that the second sensor 
had completely failed the process was operated under 
normal conditions up to the 49th sample time. To 

identify the faulty sensor the sensor validity index 
based on PCA, DPCA and CVA were calculated. 
Fig. 4(a) and (b) shows fault identification using 
static PCA for the inlet jacket temperature fault. The 
fault is detected and isolated at time 55. Fig. 5 shows 
fault identification using DPCA. As can be observed 
from Fig.5 (a), the fault is detected at time 55. 
However, the SVI based on the DPCA, Fig. 5(b), 
failed to uniquely identify the fault. 

Fig. 2: SVI chart for fault isolation using dynamic 
PCA, forgetting factor = 0.1 

Fig. 3: SVI chart for fault isolation using CVA, 
forgetting factor = 0.1

The SVI based on DPCA model shows that two 
sensors are decreasing, and thus the faulty sensor 
was masked by process dynamic and variable cross-
correlation. CVA model for the CSTR process was 
identified using two lagged variable and selecting 5 
statistical states explaining 79 % of variance. Fig. 6 
(upper plot) shows the EWMA-Q plot with a 
forgetting factor 0.1.  The fault was detected at time 
point 53. The lower plot in Fig. 6 shows the SVI 
based on CVA, the faulty sensor was clearly 
identified. In contrast to the SVI based on the static 
and dynamic PCA, CVA based sensor validity index 
provided faster sensor fault identification with the 
fault being identified at time 51. The superiority of 
the CVA based dynamic SVI statistic stems from the 
fact that CVA model was able to better capture 
process dynamics than the other approaches. 
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Fig. 4. EWMA-Q (upper plot) and SVI (lower plot) 
using PCA (PCs=4) 

Fig. 5. EWMA-Q (upper plot) and SVI (lower plot) 
using dynamic PCA (PCs=5, lag time=2). The 
horizontal purple line in the lower plot is the 
faulty sensor SVI 

Fig. 6 EWMA-Q (upper plot) and SVI (lower plot) 
using CVA (states=5, lag time=2).  

6. CONCLSIONS 

This paper has proposed a sensor fault identification 
scheme based on variable reconstruction for dynamic 
systems which is based on Canonical Variate 
Analysis state space modelling. The proposed 
dynamic sensor validation index was validated using 
data from a mathematical simulation and a 
previously studied CSTR polymerisation simulation 
and shown to provide enhanced fault location. 
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