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Abstract: Designing new molecules in desired properties involves time-consuming and 
expensive steps. Among the reported computer-aided techniques, knowledge based 
approaches suffer from acquisition of appropriate heuristics whereas mixed integer 
nonlinear programming formulations are not trivial to generate. Present study describes a 
new computer-aided refrigerant design using genetic algorithm. Genetic algorithms 
perform a guided stochastic search and allow improved solutions by sampling areas of the 
space having higher probability for good solutions. Results, very close to those previously 
reported by global optimization algorithms using MINLP formulation, illustrate the 
effectiveness of genetic algorithms to solve such computationally intensive problems with 
ease of us. Copyright © 2007 IFAC 
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1. INTRODUCTION 

 
Due to the rapid technological changes and hard 
industrial competition, chemical processing 
industries need more efficient, cheaper and greener 
substances. The fact that in some areas we still use 
the substances with very low efficiency dictates the 
necessity of designing novel molecules with desired 
properties to be the alternatives for old ones. 
Eliminating side effects of drugs, producing more 
efficient catalysts or using more efficient coolants 
are just some examples. Conceptually, the problem 
of prescreening potential new molecules is very 
difficult due to its combinatorial nature. Combination 
numbers of elements or groups to design a novel 
molecule increase exponentially with the group or 
element number. Computer-aided techniques have 
been developed in order to supplement experimental 
techniques by prescreening large numbers of possible 
molecules to select fewer to generate and test. 
 
One other difficulty associated with computer aided 
molecular design is due to the property estimation 
techniques. Although several formulae are available 
for estimating thermal, mechanical, and other 
physical properties of compounds (Reid et al. 1987; 

Horvath 1992), the number of functional groups 
whose properties can be estimated is still limited. 
Property prediction methods are typically nonlinear 
functions of atomic or group compositions. These 
nonlinearities lead to multiple local optima that may 
trap conventional search techniques in suboptimal 
parts of the search space.  
 
A variety of methods including molecular models, 
group contribution methods, empirical models, 
correlations etc. have been developed to solve the 
computer aided molecular design (CAMD) problems. 
A point of focus in this are has been the commonly 
known problem of refrigerant design to replace the 
CFCs due to their relatively high ozone depletion 
potential. The refrigerant design problem was first 
introduced by Jobak and Stephanopoulos (1989, 
1995), later tackled by Gani and Fredenslund (1993) 
by using knowledge based systems. Later Marculaki 
and Kokossis (1998) used stochastic optimization in 
the form of simulated annealing algorithm for 
designing refrigerants to replace Freon-12. The 
mixed integer nonlinear programming approaches 
have also been suggested for the formulation and 
solution of the problem. First were due to Duvedi and 
Achenie (1996, 1997) who created mixed integer 
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nonlinear programming models for single component 
refrigerant design. The locally optimal augmented 
penalty outer approximation algorithm was 
employed to solve the MINLP problem, with initial 
relaxation of the MINLP and subsequent solution of 
NLP and MILP problems. Most recently Sahinidis et 
al. (2003) presented a mixed integer nonlinear 
programming formulation employing implicit 
enumeration of a single branch-and-reduce tree. 
 
Although these methodologies have advantages, they 
also suffer from some serious drawbacks. For 
complex and industrially relevant molecules, these 
approaches have limitations due to combinatorial 
complexity, nonlinear search spaces with local 
minimal traps, difficulties in knowledge acquisition, 
difficulties in dealing with the nonlinear structure 
property correlations, and problems in incorporating 
higher level chemical knowledge and reasoning 
strategies. MINLP models, although guarantied to be 
globally optimum pose immense difficulties in terms 
of model generation (Yuceer and Berber, 2005). The 
rigorous mathematical formulations create MILP 
models that may become unmanageable for large 
size problems. Considering this difficulty, a 
MATLAB tool was generated by Yuceer et al. 
(2006) for automatically creating the MILP 
formulation to tackle single stage multi-product 
scheduling problems in plants with parallel 
production units. Otherwise, manual creation of such 
formulation may become a difficult task for large 
size problems, and be prone to errors. 
 
The field of molecular design first witnessed the first 
developments from the perspective of knowledge 
based systems, like “generate and test” algorithms 
(Joback and Stephanopoulos 1990, Gani et al. 1991), 
which were later replaced by optimization methods. 
However, optimization using mathematical 
programming (in NLP or MINLP form) could only 
be applied to relatively small size problems. On the 
other hand, stochastic optimization (genetic 
algorithms, simulated annealing) suffer from high 
computational times particularly with increased 
problem size. Furthermore, deterministic 
optimization usually involve fairly large number of 
discrete variables, are sensitive to initialization and 
formulation of constraints is not a trivial task. Thus, 
there exists a critical need to explore alternate 
strategies for molecular design that can circumvent 
these problems.  
  
In this paper, we used genetic algorithm to solve 
computer aided refrigerant design problem with 
constraints. In the rest of the paper, the technique 
employed is described and the results are presented 
together with some comparison to earlier reports. 

 
2. GENETIC ALGORITHMS 

 
Evolutionary algorithms (EA) are based on Darwin’s 
natural selection principle. Traditional deterministic 
search methods find the next sampling point using 
the problem features (such as gradients, Hessians, 

linearity and continuity). However, stochastic search 
approaches do not use these features, but randomly 
sample the search space. The evolutionary algorithm 
is one of the stochastic search methods. The state 
variables scope is scanned by means of evolutionary 
resembling operations (selection, crossover and 
mutation), which are applied on individuals in a 
population. The general idea behind genetic 
algorithms is the evolutionary creation of a new 
population of entities from an earlier generation 
through crossover and mutation processes and by 
passing on the fittest off springs to the next 
generation. In general, this approach is ultimately 
expected to lead to generations that become more and 
more fit through evolution thus achieving the desired 
design objective. The main operators are mutation 
and crossover. The mutation changes an individual to 
create a new one, while the crossover mixes two 
individuals and creates two new ones. An approach 
called elitism chooses best results before all genetic 
operations and puts it into the next offspring directly. 
Although genetic algorithms (GA) generally use 
binary representation, different notations can also be 
utilized. The population size is a parameter to control 
the optimization progress of GAs. There are no fixed 
rules for the population size when using a GA. 
Generally it must not be too low (lower than 10-20), 
because too much information will be lost in every 
generation and as a consequence the algorithm may 
converge too fast and end. Two general ways of 
dealing with constraints are penalizing infeasible 
solutions and rejection of infeasible individuals. 
There is a large body of theoretical and empirical 
evidence showing that, even for very large and 
complex search spaces, genetic algorithms can 
rapidly locate structures with high fitness ratings 
(Goldberg 1989; Davis 1991; Balku and Berber 
2006). 
 
3. DESIGNING ALTERNATIVE REFRIGERANT 

 
The problem addressed in this work calls for the 
design of molecules with desired properties. 
Specifically, we are interested in the design of 
alternative refrigerants. Our goal is to develop a 
methodology that can serve as an aid to the design of 
replacement refrigerants by identifying candidates 
with satisfactory physical properties. Specifically, we 
are interested in generating more efficient refrigerant 
molecules than Freon (with commonly known name 
of R12), widely used in automotive or home 
refrigeration systems such as shown in Figure 1. 
Thus novel molecules that we are seeking through 
the suggested optimization technique must have a 
∆Hve/Cpla ratio bigger than that of R12. Our objective 
was to maximize this ratio. We assume that all novel 
molecules are ideal gas and there is no interaction 
between the groups in a molecule. The complete 
algorithm is shown as a flowchart in Figure 2. The 
search is an iterative procedure such that new 
molecules are generated and evaluated by the 
objective function. The suggested methodology is 
illustrated by a refrigerant design example. 
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Fig. 1. A refrigeration system 

 
3.1 Constraints 
 
Novel refrigerant molecules must have a 
vaporization enthalpy bigger than or equal to that 
∆Hve of R12, which is 18.4 kJ/mol.K. By the same 
token, Cpla of new molecules must have heat capacity 
equal to or smaller than 32.2 cal/g mol.K. As has 
been mostly employed, we had also considered the 
system pressures (Pvp) at the evaporating temperature 
and at the condensing temperature were bound by the 
following constraints  
 
Pvp(Tevp) ≥ 1.4 bar,        Pvp(Tcnd) ≤  14 bar 
 
The sought refrigerant should have an evaporation 
temperature over 272.0 K a condensing temperature 
below 316.6 K. It is expected to have higher heat of 
vaporization and lower liquid heat capacity so that 
the amount of refrigerant required for a certain 
refrigeration job will be minimized. Therefore, the 
ratio of heat of vaporization to the liquid heat 
capacity is to be maximized.  
 
4. METHODOLOGY 
 
The genetic algorithm for searching optimum 
alternative refrigerant molecules was coded in 
MATLABTM (The Mathworks, 1984). Functional 
groups, which were used to produce seed population, 
were selected from the list of 30 chemical groups 
shown in Table 1. Real number representation, which 
was thought to be more efficient than the binary 
digits representation, was used in coding. The 
number of functional groups to form a new molecule 
was random between lower and upper limits. 

 
Table 1 Functional groups considered 

 
1) —CH3 9) CH≡ 17) >CO 25) =N– 
2) –CH2– 10) –C≡ 18) –CHO 26) –CN 
3) >CH– 11) –F 19) –COOH 27) –NO2 
4) =CH– 12) –Cl 20) –COO– 28) –SH 
5) >C< 13) –Br 21) =O 29) –S– 
6) =CH2 14) –I 22) –NH2 30) –SH 
7) =CH– 15) –OH 23) >NH  
8) =C= 16) –O– 24) >N–  
 
Decision was made by the algorithm before 
formation. Maximum number of groups in a 
molecule was limited by 20, and the minimum was 2. 
This number changes during the cross over process. 
The points where the groups will be detached and 

exchanged between molecules were also decided 
randomly. Provided that they remain between the 
upper and lower bounds, the number of groups may 
increase or decrease. 
 
Seed population was obtained by selecting groups 
randomly to design a feasible molecule. During 
formation first group was selected from the pool of 
30 groups under consideration. The second group 
was combined with the first one in compliance with 
the associated chemical bonds. The following groups 
were attached by the same manner consecutively. 
The only feasibility criteria considered here was to 
satisfy the chemical bonds. Thus, the procedure 
employed never allows an unfeasible chemical 
molecule in this respect, and a penalizing criteria was 
not needed. 
 
Maximum number of iterations was set to be 10 000. 
A run took about 2 minutes of CPU time in a 3.2 
GHz PC with 512 MB of RAM. In the course of 
calculations, the fitness of the generated molecules to 
the objective function was calculated by group 
contribution method (Joback and Reid, 1987). 
 
4.1 Modeling of physical properties 
 
The properties to be considered in the calculations 
are the critical temperatures, critical pressures and 
the normal boiling point temperatures. Equations 1 
through 4 reflect a group contribution method due to 
Joback and Reid (1987) to calculate the boiling 
temperature Tb, critical temperature Tc, critical 
pressure Pc and ideal gas heat capacity at average 
temperature Cp0a respectively, of the newly 
synthesized compound. These thermal properties are 
used to derive other thermal properties in the sequel. 
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Recall that T is a given constant. All other parameters 
in these equations are constants whose values wee 
taken from Joback and Reid (1987).  
 
Using the above properties and the given operating 
temperatures of the cycle, Eqs. 5, 6, 7, and 8 were 
used to calculate the reduced boiling temperature Tbr, 
the reduced average temperature Tavgr, the reduced 
condensing temperature Tcndr, and the reduced 
evaporating temperature Tevpr, respectively. 
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Fig. 2. Computational flowchart for genetic algorithm in refrigerant design problem 
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After these steps acentric factor were calculated as 
follows (Sahinidis et al. 2003): 
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Using the acentric factor and previously calculated 
values of average temperature, the liquid heat 
capacity Cp (Eq. 12) is derived from the ideal gas 
heat capacity using Rowlinson’s modification of 
Bondi’s equation (Sahinidis et.al. 2003). 
 
The group contribution method of Joback and Reid 
(1987) was used to estimate the enthalpy of 
evaporation temperature ∆Hvb (Eq. 13) and 
vaporization at boiling temperature ∆Hve (Eq. 14). 
After all that calculations we have the ratio of 
∆Hve/Cpla for every candidate molecules. At this point 
we put those molecules on a circle having the area 
proportionately fitting the objective function. So the 
most fitting candidate has the biggest area and the 
least fitting candidate has the smallest area as shown 
in Figure 3. 
 
Wheel was randomly turned k times, k being the 
number of candidate molecules. In this process the 
most fitting candidate has bigger chance to be chosen 
whereas the least fitting candidate has the smallest.  
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So new set of candidates were created from the old 
ones. After this step genetic operators were used. 
First genetic operator was crossing-over. For 
crossing over, two molecules are chosen randomly 
from the new set, and two or more groups are taken 
from the chosen molecules and replaced. After that 
the second genetic operator, mutation, was 
performed. This mean that randomly selected group 
of a random molecule was changed with another 
randomly selected suitable group from groups 
considered. 
 

 
 
Fig. 3. A sample roulette wheel for selecting new 

candidates 
 
This procedure resulted in a completely different and 
new set of candidate molecules. At this point we 
returned to the calculation step and continued on 
iteratively.  
 
 

The algorithm ended, as reflected in Figure 2, when 
the number of iterations reached the pre-selected 
maximum. 
 
Generated refrigerant molecules are shown in 
Table2. The last column in this table shows the order 
in which the molecules generated by the MINLP 
approach of Sahinidis et al. (2003) appeared. In both 
study, same group contribution method was used and 
almost same groups were chosen to produce novel 
molecules. Thus, compared to the global 
optimization approach, genetic algorithm performed 
very well. It is seen that most of the molecules seem 
to be suitable as candidates for refrigeration, eight 
out of thirteen being commercial molecules, namely 
formyl chloride, methyl chloride (R40), 1-propyne, 
methylacetaldehyde, allene, difluoramine and 
chlorodifluoromethane (R22). Among those, the 
molecules identified as number 9 and 13 fall within 
the group of CFCs. Their possible exclusion in the 
generation requires further constraints in terms of 
ozone depletion potential whose calculation for 
certain molecules is still limited.  
 
From the optimization viewpoint, one of the main 
advantages of evolutionary computational techniques 
is that they do not have much mathematical 
requirements about the optimization problem; all 
they need is an evaluation of the objective function.  
 
The results demonstrate that evolutionary algorithms, 
combined with property estimation techniques by 
group contribution method can be effectively used 
for molecular design of alternative refrigerants, a 
problem with known combinatorial difficulties. The 
algorithm presents ease of implementation and 
computational times considerably less than previous 
reports, because the evolutionary algorithms are 
known to be 0-order methods with almost only 
mathematical involvement of an objective function 
evaluation, they can handle nonlinear-problems with 
discrete, continuous or mixed-integer formulations. 
Thus, the algorithm can be utilized for similar 
molecular design problems like fuel additives, 
polymers, pharmaceuticals and solvents. 
 

Table 2 Generated refrigerant molecules 
 

# Molecule Structure ∆Hve Cpla Pvpc Pvpe ∆Hve/Cpl 

Order in 
Sahinidis’s 
Results 

1 FNO F – N = O 23.2849 18.0788 6.8854 1.5293 1.2880 1 
2 CHClO Cl–CH=O 26.4161 22.3792 10.1231 2.4538 1.1804 2 
3 CH3Cl CH3–Cl 21.5817 19.2367 6.2412 1.6078 1.1219 4 
4 CFONH2 O=CH–NH–F 28.4569 28.7643 7.7960 1.5430 0.9893 8 
5 ClFO Cl–O–F 20.8654 21.2431 7.1031 1.7272 0.9822 9 
6 C3H4O CH3–CH=C=O 27.7733 28.8739 6.6663 1.5118 0.9619 11 
7 C3H4 CH3–C≡CH 21.4391 23.1079 6.3454 1.6886 0.9278 13 
8 C2F2 F–C≡C–F 19.6080 21.2471 7.9169 2.1076 0.9229 14 
9 ClCH2F Cl–CH2–F 20.7080 22.7189 6.6507 1.6722 0.9115 15 
10 C3H6O CH3–CH2–CH=O 27.0480 31.0442 7.4916 1.7330 0.8713 21 
11 C3H4 CH2=C=CH2 20.8490 24.0872 5.9674 1.5521 0.8656 24 
12 NHF2 F–NH–F 19.0570 22.5049 11.0137 2.7176 0.8468 27 
13 CHF2Cl (F-)(F-)>CH–Cl 19.4542 23.0369 6.9970 1.7568 0.7770 32 
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Nomenclature 
 
α : intermediate variable used to calculate  
  acentric factor, ω 
β : intermediate variable used to calculate  
  acentric factor, ω 
ai : number of atoms of group i 
Cp0a : ideal gas heat capacity at average  
  temperature, cal/g-mol-K 
Cp0ai : constant contribution of group i to ideal  
  gas heat capacity 
Cp0bi : first-order contribution of group i to ideal  
  gas heat capacity 
Cp0ci : second-order contribution of group i to  
  ideal gas heat capacity 
Cp0di : third-order contribution of group i to ideal  
  gas heat capacity 
Cpla : liquid heat capacity at average  
  temperature, cal/g-mol-K 
ni : number of groups of type i selected 
Pc : critical pressure, bar 
Pci : contribution of group i to critical pressure 
Tavg : average temperature, Tavg=294.26 K 
Tavgr : reduced average temperature 
Tb : boiling temperature, K 
Tbi :  contribution of group i bi to boiling  
  temperature 
Tbr : reduced boiling temperature, K 
Tc : critical temperature, K 
Tci : contribution of group i to critical  
  temperature 
Tcnd : condensing temperature, Tcnd =316.48 K 
Tcndr : reduced condensing temperature 
Tevp : evaporating temperature, Tevp=272.04 K 
Tevpr : reduced evaporating temperature 
∆Hvb : enthalpy of vaporization at boiling  
  temperature, kJ/g-mol 
∆Hvbi : contribution of group i to enthalpy of  
  vaporization at boiling temperature 
∆Hve : enthalpy of vaporization at evaporating  
  temperature, kJ/g-mol 
ω  : acentric factor 
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