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Abstract: Robust control of a solidification process is considered. In solidification
processes, the properties of the solidified material are significantly determined by
the solidification rate, defined as the time derivative of the solid/liquid interface
position. Most often the position can not be measured directly, and thus the
interface position must be estimated in order to employ feedback control. The
solidification model has a variable structure where the state equations depend
on the interface position. An observer based on a linearized model is developed.
A gain-scheduled PI-controller is implemented, and the robustness properties are
tested for parametric uncertainty in the model.
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1. INTRODUCTION

Robustness of a system refers to a system that
functions adequately for all admissible uncer-
tainties. Sources for system uncertainty may be
poor plant knowledge, uncertain or slowly vary-
ing parameters, nonlinearities (e.g. hysteresis or
friction), errors or unknown initial conditions,
reduced-order models, additive unknown internal
or external noise, and environmental influence
(Weinmann, 1991).

In some systems, there are no measurements of
the output to be controlled. Instead, other output
variables are measured. Then, if the system is ob-
servable, the controlled output can be estimated
from the other measured outputs. The separation
principle states that for linear systems the state
feedback control and an observer can be designed
independently (Friedland, 1986). However, a criti-
cal assumption for the separation principle is that
the observer includes an exact dynamic model of
the plant, which is almost never valid in reality

since the precise dynamic model is rarely known.
Thus, it is of importance to check the robustness
properties of the system when the controller and
observer are designed through the use of the sep-
aration principle.

In solidification processes, the solidification rate
significantly determines the properties of the so-
lidified material. Some processes require certain
solidification rates in order to achieve well-defined
microstructures, and the solidification rate may
also affect the capturing of impurities in the solid
phase. By controlling the solidification rate, the
product quality can often be improved.

In order to employ feedback control of the so-
lidification rate, a measurement or reliable on-
line estimate of the interface position must be
available. An example of direct measurement of
the interface position is given in Drevermann et
al. (2004b). The movement of the interface is
measured by an ultrasonic pulse-echo technique
which can be used for rod-like sample geometries
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(Drevermann et al., 2004a), and thus estimation
of the interface position is not necessary. However,
in most industrial casting processes, the interface
position can not be measured directly. In most
cases, the only data available are temperatures
at the mould walls or in the melt, and hence
the interface position must be estimated from the
measured temperatures.

Methods for designing and analyzing robustness
properties in control and estimation systems are
described e.g. in the books Burl (1999), Skoges-
tad and Postlethwaite (1996) and Petersen and
Savkin (1999). Previous work on state estimation
and feedback control for casting operations are
reported in Ray et al. (1979), Greiss and Ray
(1980), and Batur et al. (1999). However, robust-
ness issues are not treated in these works.

In this paper, a simple one-dimensional solidifi-
cation model based on first principles is used to
estimate the interface position and the tempera-
ture dynamics for a pure substance. The model
is linearized numerically, and a Kalman filter is
implemented based on the linearized model at
different operating points. A gain-scehduled PI-
controller is implemented in order to control the
solidification rate. Robust stability is tested on the
closed-loop system for parametric uncertainty in
the model.

The paper is organized as follows: In the second
section the general control configuration is de-
scribed together with conditions for robustness
properties. Then the solidification model is de-
scribed and some assumptions are given. In the
subsequent section the model is linearized numer-
ically. Next, the Kalman filter gain is calculated,
and then some simulation results are presented.
Finally, some conclusions are presented.

2. A GENERAL CONTROL
CONFIGURATION WITH UNCERTAINTY

Many linear control problems including model
uncertainty can be formulated using the block
diagram in figure 1 (Skogestad and Postleth-
waite, 1996). P is the generalized plant model, K
is the controller, and the perturbation∆, assumed
to be bounded, represents the uncertainty. The
control signal u is generated from the controller,
K, based on information in the sensed outputs
v (e.g. commands, measured plant outputs, mea-
sured disturbances, etc). The exogenous inputs
w may be commands, disturbances, and noise.
The exogenous outputs, z, are error signals to
be minimized. u∆ is the perturbation input (the
output of the feedback perturbation ∆), whereas
y∆ is the perturbation output (the input to the
feedback perturbation ∆).

K

exogenous
outputs

exogenous
inputs

control signals sensed outputs
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w z
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Fig. 1. General control configuration for the case
with model uncertainty.

uΔ
yΔ

Δ

Nw z

Fig. 2. N∆-structure for robust closed-loop per-
formance analysis.

The plant P thus has three inputs and three
outputs (each of which can be a vector), and can
be written as⎛⎝ y∆

z
v

⎞⎠=
⎛⎝Py∆u∆ Py∆w Py∆u
Pzu∆ Pzw Pzu
Pvu∆ Pvw Pvu

⎞⎠⎛⎝ u∆
w
u

⎞⎠ (1)

=P

⎛⎝ u∆
w
u

⎞⎠ .

In order to analyse stability and performance
conditions for the uncertain closed-loop system, it
is desirable to represent the uncertain system in
the standard form given in figure 2. The nominal
closed-loop transfer function N(s) is found by
closing the feedback loop for the controller, u =
Kv, thusµ
y∆
z

¶
=

µ
Ny∆u∆ Ny∆w

Nzu∆ Nzw

¶µ
u∆
w

¶
= N

µ
u∆
w

¶
,

(2)
where

Ny∆u∆ = Py∆u∆ + Py∆u (I −KPvu)
−1KPvu∆

Ny∆w = Py∆w + Py∆u (I −KPvu)
−1

KPvw
Nzu∆ = Pzu∆ + Pzu (I −KPvu)

−1
KPvu∆

Nzw = Pzw + Pzu (I −KPvu)
−1

KPvw.

It can be shown (Skogestad and Postlethwaite,
1996) that when N is nominally stable and when
∆ is bounded, the stability of the system in
figure 2 is equivalent to the stability of the M∆-
structure in figure 3 where M = Ny∆u∆ .

In the next subsections, conditions for checking
the stability of the M∆-structure will be derived
for unstructured and structured ∆.
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uΔ yΔ
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Fig. 3. M∆-structure for robust closed-loop sta-
bility analysis. M = Ny∆u∆ is the transfer
function from u∆ to y∆.

2.1 Robust stability for unstructured uncertainty

Unstructured uncertainty is often referred to as
full-block complex perturbation uncertainty. ∆ is
then allowed to be any (full) complex transfer
function matrix satisfying k∆k∞ ≤ 1.
If M(s) is nominally stable and the perturbations
∆(s) are stable, then the M∆-structure in fig-
ure 3 is stable for all perturbations ∆ satisfying
k∆k∞ ≤ 1 if and only if (Skogestad and Postleth-
waite, 1996)

σ̄ [M(jω)] < 1, ∀ω ⇔ kMk∞ < 1. (3)

2.2 Robust stability for structured uncertainty

If the uncertainty in the model is structured, i.e.
∆ is block-diagonal, the above stability condition
(3) is often too conservative. It is then desirable
to obtain a tighter robust stability condition.
The structured singular value µ(M) depends on
both M and ∆, and thus takes advantage of the
structure in the uncertainty. µ(M) is defined as
(Skogestad and Postlethwaite, 1996)

µ(M)−1 , min
∆
{σ̄ (∆) |det (I −M∆) = 0} . (4)

A general feedback system is internally stable
for all possible block-diagonal perturbations with
σ̄ [∆(jω)] < 1,∀ω, if and only if the nominal
closed-loop system is internally stable and

µ [M(jω)] ≤ 1, ∀ω. (5)

3. SYSTEM DEFINITION

The solidification process studied in this paper
is sketched in figure 4. A mould with height L,
assumed to be be covered by a thick layer of
insulation on the vertical surfaces, is situated
in a solidification chamber and is initially filled
with melt. Heat is extracted from the melt by
cooling the bottom mould wall at a rate Q̇0.
At the top of the mould, the melt is heated at
a rate Q̇L by imposing electrical current on a
resistance heater. As the solid begins to form,
the interface position, h, and the temperature
profiles Ts(t, z) and T (t, z), will change with time;
subscripts s and refer to solid and liquid phase,
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Fig. 4. Simplified sketch of the solidification
process with available temperature measure-
ments in the crucible.

respectively. For simplicity Q̇0 is assumed to be
constant during solidification, whereas Q̇L is used
to control the solidification rate. The number of
available (temperature) measurements in the melt
are ny, and the estimate of the interface position
is based on the measured temperatures.

The mathematical model of this process is based
on the heat diffusion equation. There is one fixed
boundary condition and one moving boundary
condition for both phases. The independent vari-
ables are time t and position z, and the resulting
model is a system of two PDEs and one ODE. The
spatial domain is split into two subdomains by the
interface, one for each phase.

The discretization method is based on a fixed-
grid finite-difference method, and is mainly taken
from Chun and Park (2000). Details about the
implementation of the model are found in Furenes
and Lie (2006a).

The state vector with dimension nx = N + 1 is
given as

x =
¡
x1 · · · xN xN+1

¢T
=
¡
T1 · · · TN h

¢T
where T1, ..., TN are the temperatures in the spa-
tial grid cells and N is the number of grid cells. h
is the interface position. The input variables are

u =
¡
u1 u2

¢T
=
¡
Q̇0 Q̇L

¢T
where, for simplicity, Q̇0 is assumed to be con-
stant. Temperature measurements are available at
ny positions in the melt

ym =
¡
y1 · · · yny

¢T
,

where ny ≤ N .
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Table 1. State definitions for the solidi-
fication model.

State definitions for the temperatures Node no.(n)

dTn

dt
= αn

∙
Tn+1 − Tn

(∆z)2
− Q̇0

Akn∆z

¸
1

dTn

dt
= αn

Tn+1 − 2Tn + Tn−1

(∆z)2
(2, i− 1) ,
(i+ 1, N − 1)

dTn

dt
= αn

k̃

k̃s
Tn+1−2Tn+Tn−1+Tm

³
1− k̃

k̃s

´
(∆z)2

+
αn

k̃s

(1− ζ)∆Ĥf

∆z

dh

dt

i

dTn

dt
= αn

Tn+1−2Tn+
k̃s
k̃

Tn−1+Tm

³
1− k̃s

k̃

´
(∆z)2

+
αn

k̃

ζ∆Ĥf

∆z

dh

dt

i+ 1

dTn

dt
= 2αn

∙
Q̇L

Akn∆z
− Tn − Tn−1

(∆z)2

¸
N

State definition for the interface position
dh

dt
=

k̃s

∆Ĥf

Tm − [(1− ζ)Ti−1 + ζTi]

∆z

− k̃

∆Ĥf

[(1− ζ)Ti+1 + ζTi+2]− Tm

∆z

−

The controlled output is

yc = h.

The definition of the state equations for the tem-
peratures and the position vary with the nodal
index i, where the interface position is located
between node indices i and i+1. The model thus
has a variable structure of the system of the form

dxk
dt

= fk(x,u,i) for k = 1, .., N + 1 ,

where i can be found by comparing the nodal
temperatures with the melting temperature, Tm:

i = max
k
(Tk ≤ Tm) , k = 1, ..,N.

The state space model for the temperatures and
the interface position are given in Table 1. The
dimensionless distance from the interface position
h to node i is given by

ζ = ζ(h) =
h− i∆z

∆z
.

The grid size is ∆z = L/N and k̃ = k/ρ.

Figure 5 shows the scaled temperature distribu-
tion and the interface position as functions of time
at constant heating and cooling conditions.

4. STATE ESTIMATION

4.1 Linearization of the model

Since the solidification process is a batch process,
there exists no single operating point around
which the system can be linearized (Bonvin,
1998). The solidification model undergoes struc-
tural changes in the definition of the state vari-
ables each time the interface position crosses a
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Fig. 5. Simulation of the solidification model with
N = 50 discretization elements. Temperature
distribution and interface position (all scaled)
for constant cooling and heating conditions.

grid line (when the nodal index i changes), and
hence the system is linearized around a trajectory
given by the interface position. The A and B
matrices will change with the nodal index i, and
hence the A and B matrices need to be calculated
for every index i ∈ 1, ...,N , whereas the C-matrix
is independent of the index. The procedure of the
switching between the different systems is han-
dled by the events function, and is described in
(Furenes and Lie, 2006b).

4.2 Calculation of steady state Kalman filter
gains

The different A matrices were used as inputs
to the steady state Kalman filter gain algorithm
(see e.g. (Lewis, 1986) for more information on
Kalman filter theory), and thus the Kalman gain
Kf values also depends on the interface position.
The switching between the different filter gains
follows the model switching.

5. CONTROLLER DESIGN AND NOMINAL
STABILITY

A gain-scheduled PI controller is used. The sta-
bility margins for 3 operating points are shown in
Table 2, where S = (I + L)

−1, T = (I + L)
−1

L,
L = GKc, and G = E (sI −A)−1B. It should be
noted that even though the linearized system is
stable, this does not guarantee the overall nonlin-
ear system to be stable.
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Table 2. Stability margins and maxi-
mum peaks for the nominal system at
3 operating points. MT = maxω |T (jω)|

and MS = maxω |S(jω)|.

h PM [ ◦] GM [dB] MS [dB] MT [dB]

0.5 37 17 3.8 1.1
0.7 56 18 3.5 0.6
0.9 65 58 2 0
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Fig. 6. Uncertain linearized process with Kalman
filter and control feedback.

6. ROBUSTNESS TESTS

The uncertain linearized system for estimation
and control of the interface position can be rep-
resented in state space form as shown in figure 6.
Kf is the Kalman filter gain, Kc is the controller
transfer function, Ã∆ represents uncertainty in
the A-matrix, and B̃∆ represents uncertainty in
the B-matrix. The measurement matrix is as-
sumed to contain no uncertainty.

The signals for the generalized plant are identified
in Table 3.

Table 3. Definition of the signals in the
uncertain system.

Signal Definition

Sensed outputs: v =
¡
ec ef

¢T
=
¡
r − ŷc ym − ŷm

¢T
Control signals: u =

¡
uc uf

¢T
Exogenous inputs: w =

¡
r d n

¢T
Exogenous outputs: z =

¡
ec ef

¢T
Uncertain inputs: u∆ =

¡
uA∆ uB∆

¢T
Uncertain outputs: y∆ =

¡
yA∆ yB∆

¢T

6.1 Open loop system (obtaining P )

The estimated states are given by

·
x̂=Ax̂+ ũA∆ +Buc + ũB∆ + uf (6)

ŷm =Cx̂. (7)

where A ∈ Rnx×nx , B ∈ Rnx×nuc , C ∈ Rnym×nx ,
and

ũA∆ = Ã∆x̂, ũB∆ = B̃∆uc.

The perturbations Ã∆ and B̃∆ must be pulled out
in ∆ such that ∆ has the structure

∆ =

µ
A∆ 0
0 B∆

¶
, (8)

and where

kA∆k∞ ≤ 1, kB∆k∞ ≤ 1 (9)

for all possible perturbations Ã∆ and B̃∆. This
can be done by factoring Ã∆ and B̃∆ into

Ã∆ = DA1A∆DA2 , B̃∆ = DB1B∆DB2

provided that equation (9) holds. Ã∆ is decom-
posed by QR-factorization into

Ã∆ = QR = DA1
DA2

= DA1
InxDA2

= DA1
A∆DA2

.

The same procedure is performed on B̃∆. Thus,
A∆ = B∆ = Inx for all possible perturbations Ã∆
and B̃∆, and equation (9) holds.

In order to derive the generalized plant, P , ex-
pressions for y∆ and w as functions of u∆ and u
must be found. The elements of P needed in the
calculation of M = Ny∆u∆ are

Py∆u∆ =

µ
DA2GpDA1 DA2GpDB1

0 0

¶

Py∆u =

µ
DA2

GpBu DA2
Gp

DB2
0

¶

Pvu∆ =

µ
−EGpDA1 −EGpDB1

−CGpDA1
−CGpDB1

¶

Pvu =

µ
−EGpB −EGp

−CGpB −CGp

¶
,

where
Gp = (sI −A)

−1
.

N(s) is found by closing the feedback loop for
the generalized controller, u = −Kv (negative
sign since in the general configuration positive
feedback is used), thusµ

uc
uf

¶
=

µ
−Kc 0
0 −Kf

¶µ
ec
ef

¶
.

6.2 Robust stability tests

The M∆-structure in figure 3 is used for robust
stability analysis. The upper bound of µ (M) is
calculated using the Matlab Robust Control tool-
box command mussv. Figure 7 shows µ (M) and
σ̄ (M) for two different levels of uncertainty in the
A and B-matrices (10% and 40% in both) at one
operating point (h = 0.7). The figure shows that
the condition σ̄ (M) ≤ 1 is too conservative when
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Fig. 7. µ (M) and σ̄ (M) for two different levels
of uncertainty in the A and B-matrices at
one operating point (h = 0.7). The condition
σ̄ (M) ≤ 1 is too conservative when ∆ is
block-diagonal.

∆ is block-diagonal. According to the robust sta-
bility condition in (5), the controller gain should
be detuned in order to achieve robust stability for
uncertainties larger than 40% at operating point
h = 0.7. The test for robust stability should be
performed at all operating points. There is no
guarantee that the tests of the linearized subsys-
tems holds for the total nonlinear system, but
such robust stability will give a hint about the
robustness properties for the nonlinear system.

7. CONCLUSIONS

The goal of the reported work is to study the
robustness properties of a solidification system
with a Kalman filter and a gain-scheduled PI-
controller. Parametric uncertainty is introduced
to the state space model, and by QR-factorization
a simple method for pulling out the uncertainty
matrix is illustrated. The test cases show that the
singular value criteria is too conservative when
the uncertainty is represented by a block-diagonal
matrix.

In this study, the radiation and conduction dy-
namics for the control devices at the boundaries
have been neglected. Also, in the simulated cases,
temperature measurements are assumed to be
available in the melt. However, in most practical
industrial processes, only temperature measure-
ments outside the mould wall are available. The
method proposed in this paper, can be utilized
for more realistic instrumentation settings. Then
the model should be extended to include state
variables of the temperatures outside the mould
walls, and more complex boundary conditions
must be modeled. The model extensions as well
as validation with plant data is ongoing and will
be included in future work.
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