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Abstract: The Activated Sludge Model No.1 (ASM1) allows the prediction of
organic matter degradation, nitrification and denitrification in the activated sludge
bioreactors using thirteen states variables. This paper deals with modal reduction
procedure applied to the ASM1, that followed by physical considerations about the
process allows the development of a 4-state variables model which is still able to
describe the nonlinear behavior of bioreactors in the Activated Sludge Process
(ASP). Furthermore, coupling the reduced bioreactor model with a simplified
model for the secondary settler (as the Takács model), the overall ASP behavior
is deduced. Copyright c©2007 IFAC
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1. INTRODUCTION

Wastewater treatment plants improvement repre-
sent a mandatory task to preserve water resources
and to assure the regulation regarding water qual-
ity preservation. In this sense, the application of
advanced control systems represents an economic
alternative to achieve this requirement. Moreover,
since hardware instrumentation is still expensive,
with undesirable time-delays, or unavailable, the
development of reliable simplified models and soft
sensors is a prerequisite to continuous monitoring
the effluent quality.

In a biological wastewater treatment plant, the ac-
tivated sludge process (ASP) represents the main
unit where the biodegradation of the carbon and
nitrogen compounds takes place. The state-of-
the-art model for the bioreactor is the Activated
Sludge Model No.1 (Henze et al., 1987) that could
be coupled with a simplified, one dimensional,
model of the secondary settler, Takács model
(Takács et al., 1991), to describe the behavior
of an ASP. The ASM1 describes the nonlinear

dynamics of the bioreactor using thirteen state
variables and nineteen parameters. Moreover, it
refers to state variables that not always can be
acquired in a wastewater treatment plant; also
in such a sense the model is limited for on-line
process monitoring purposes. For instance, mea-
surable components such as COD can be obtained
only as composite variable. For these reasons in
literature a wide number of reduced-order models
for the ASP is present, as for instance: (Jeppsson
and Olsson, 1993), (Steffens et al., 1997), (Gómez-
Quintero et al., 2000), (Chachuat et al., 2003),
(Smets et al., 2003), (Spérandio and Queinnec,
2004).

In this paper, we will propose a simplified model,
with state variables directly related with the typi-
cal measurements used in an ASP, to obtain a fast
and reliable instrument to represent the process
itself or with an estimator. The model complexity
is reduced in the following way: starting from a
systematic definition of the process dynamics and
classifying the state variables on a time basis, the
model order is preventively reduced. Afterwards,
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the acquired knowledge about the process is used
to further reduce the model. The validation of
the obtained simpler model is then carried out by
means of the frequency response analysis, using as
input variables the influent flow rate and/or load,
for different linearization points. In this context,
Bode and singular value plots are useful tools
to corroborate the dynamic consistency of the
reduced- with respect to the full-model (ASM1)
as a function of frequency, considering the SISO
or MIMO configurations, respectively.

2. MODEL REDUCTION PROCEDURE

The procedure used to obtain the proposed model
starts with the classification of the state vari-
ables on time basis. The major problem with this
approach is to discriminate the different modes
present in the system. This can be achieved by
considering the solution of the linear approxima-
tion of the nonlinear process, where the different
time scales are measured by the system eigen-
values. Obviously, the analysis of the linearized
system is valid around the conditions where the
Jacobian matrix, A, is calculated; hence in this
case the linearization of the mass balance of the
ASM1 has been accomplished by considering dif-
ferent data sets and operating points. In such a
way the information obtainable from the different
Jacobian matrixes can be considered representa-
tive for a wide range of operating conditions.

The eigenvalues of the linearized system indicate
the existence of different time scales in the pro-
cess, hence the second important aspect of this
procedure concerns with the association of the
model modes to the model states. The assessment
of relationships between states and dynamics of
the system is developed through the homotopy
analysis. This method requires starting with a
system with a defined relationship between eigen-
values and states: the diagonal elements of the
Jacobian matrix (AD). In such a way each di-
agonal element (i.e., each eigenvalue) is directly
related to the state. Then the system is trans-
formed using the homotopy parameter r ∈ [0, 1],
by means of a continuation method (Robertson
and Cameron, 1997), into the actual system while
tracing the eigenvalues:

H(r) = (1 − r)AD + rA. (1)

From the homotopy matrix, the state variables
could be classified in:

• Fast states: with time constants of seconds.
• Medium states: with time constants of min-

utes.
• Slow states: with time constants of hours.

Furthermore, considering the region of interest,
states with dynamics at either extreme (fast or

slow) can be discharged from model equations
and a systematic approach can be used to re-
duce the ASM1 complexity. Modal reduction tech-
niques, such as modal truncation and residualiza-
tion (Skogestad and Postlethwaite, 1998), provide
the mathematical basis for reduction on time-scale
separation. The lower order model obtained with
the systematic approach could be further reduced
by means of physical considerations: in fact, the
knowledge and experience acquired by the mod-
eler can be used to define a simpler model.

In the following the reduction procedure is applied
to the ASM1.

3. REDUCED MODEL DEVELOPMENT

As a case study, we consider the full-scale wastew-
ater treatment plant reported in (Mulas, 2006).
The ASP has a classic configuration: the bioreac-
tor consists of an anoxic (denitrification) followed
by an aerobic (nitrification) zone. To maintain
the microbiological population, the sludge from
the settler is recirculated into the anoxic basin,
while the sludge concentration is kept constant
by means of sludge withdrawn from the settler.
The process representation is obtained with Mat-
lab/Simulink (R14).

The inputs to the model are selected in order
to represent the variations in wastewater flow
rate and concentrations by using the functions
proposed by Isaacs and Thornberg (1998) for
urban wastewater treatment plants. Furthermore,
this representation is fulfilled by considering the
situation of an equalization basin, which could be
present or not in the plant. The dynamical model
for this unit describes the dilution of wastewater
components, assuming that no biological reactions
occur.

Flow rate = 6152 [m3/d]
COD = 221 [gCOD/m3]
TSS = 46 [gSS/m3]
SNO = 0.22 [gN/m3]

TKN = 22 [gN/m3]
fNH = 0.36 −

Table 1. Influent average conditions for
the considered plant.

Having first defined the input data for the system
(by multiplying the average influent data in Table
1 for the mentioned periodic functions, we obtain
a typical evolution under dry weather condition),
different data sets and operating points need to
be considered to face different operating modes
in order to investigate the state-space model rep-
resentation by means of the homotopy matrix in
Equation 1.
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Component → 1 2 3 4 5 6
Reaction (r)

Process ↓ SI SS XS SO SNO SNH

1. Het.growth (aero) − 1
YH

−
1−YH

YH
−iXB θ1

SS

KS+SS

SO

SO+KOH

2. Het.growth (anox) − 1
YH

−
1−YH

2.86YH
−iXB θ1

SS

KS+SS

KOH

SO+KOH

SNO

SNO+KNO
ηg

3. Autot.growth −
4.57−YA

YA

1
YA

−iXB − 1
YA

θ2
SNH

SNH+KNH

SO

SO+KOA

4. Decay 1 θ3

5. Ammonification 1 θ4

θ5
XS

θ6+XS
( SO

SO+KOH

6. Hydrolysis 1 −1

+ηh
KOH

SO+KOH

SNO

SNO+KNO
)

Table 2. Reduced model with 6 state variables.

It is worth noting that, even if anoxic and aer-
ated zones are being represented with the same
ASM1, those present different dissolved oxygen
concentration that influences the state variable
dynamics by mean of the switching function. In
both cases, the state variables can be classified as
fast, medium and slow and considering as region
of interest the one with the eigenvalues comprised
between 250 and 90 d−1, we noticed that the
system does not behave in the same way in the two
zones. Strictly considering the homotopy analysis,
we would have obtained different models for the
biological reactor zones. This means that some
more assumptions should be made in order to
obtain a more suitable model.

As a first attempt, we came out with a model
involving only six state variables:

x6s = [SI , SS , XS , SO, SNO, SNH ]T (2)

As mentioned, the remaining ASM1 state vari-
ables can be truncated, in order to preserve the
steady state behavior of the original system with-
out losing the physical interaction between the
state variables, or residualized, i.e. the deriva-
tives of those states variables are approached to
zero leading to a system involving differential and
algebraic equations. The later approach involves
inevitably longer computational CPU time indeed
without improving the reduced model behavior;
for this reason the state variables not included
in x6s have been truncated and we will refer to
this model as Model6s which is summarized in a
Petersen matrix form shown in Table 2. The model
involves ten kinetic and stoichiometric parameters
that keep the same meaning as in the ASM1:

p =[YH , YA, iXB, KS, KOH , KNO,

KNH , KOA, ηg, ηh]T
(3)

and the following new parameters:

θ1 = µHXTrunc
BH

θ2 = µAXTrunc
BA

θ3 = (1 − fP )(bHXTrunc
BH + bAXTrunc

BA )

θ4 = kaSTrunc
ND XTrunc

BH

θ5 = khXTrunc
BH

θ6 = KXXTrunc
BH

(4)

The values of θi (i = 1, 6) parameters depend
on the truncated state variables evaluated at the
nominal process conditions (as evidenced by the
superscript Trunc) and used as tuned parame-
ters. These variables exhibit the slowest dynam-
ics of the system; hence their variations can be
considered negligible with respect to the other
states. This means that all the terms in 4 can
be considered constant and retain the same value
in anoxic and aerated conditions, except for θ4,
which depends on STrunc

ND , that has different con-
stant concentration depending on the zone.
We can go a step further noticing that being
SI , SS and XS not directly measurable, Model6s

is not suitable for online utilization. For this rea-
son, following the idea of Jeppsson and Olsson
(1993) and further used by Chachuat et al. (2003),
we lump together the organic components to rep-
resent a single state variable, the “reduced” COD:
RCOD = SI + SS + XS . This is assumed to be di-
rectly measurable and representative of the COD
in the activated sludge process. From Equations
5, another important simplification follows. We
notice that lumping the organic component in
Model6s means that the hydrolysis process r6 is
not considered anymore in the simpler Model4s as
shown in Equations 6.

dSI

dt
=D(Sin

I − SOut
I )

dSS

dt
=D(Sin

S − SOut
S ) −

1

YH

(r1 + r2) + r6

dXS

dt
=D(X in

S − XOut
S ) + r4 − r6

(5)
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Component → 1 2 3 4
Reaction (r)

Process ↓ RCOD SO SNO SNH

1. RCOD growth(aero) − 1
YH

−
1−YH

YH
−iXB θ1

RCOD

KAero
r +RCOD

SO

SO+KOH

2. RCOD growth(anox) − 1
YH

−
1−YH

2.86YH
−iXB θ1

RCOD

KAnox
r +RCOD

KOH

SO+KOH

SNO

SNO+KNO
ηg

3. RCOD growth(due to N) −
4.57−YA

YA

1
YA

−iXB − 1
YA

θ2
SNH

SNH+KNH

SO

SO+KOA

4. Decay 1 θ3

5. Ammonification 1 θ4

Table 3. Reduced model with 4 measurable state variables.

dRCOD

dt
=D(Rin

COD − Rin
COD)

−
1

YH

(r1 + r2) + r3

(6)

Reaction rates r1 and r2 in Equation 6, are re-
ported in Table 3; where a new parameter has
been introduced: Kr = KS

SI+SS+XS

SS
. Kr is a

function of the organic compounds in the system
and it seems a too hard approximation consider
it constant during anoxic or aerobic oxygenation
conditions. For this reason, the following assump-
tion is made:

KAero
r = Kr

SO

KOH + SO

KAnox
r = Kr

KOH

KOH + SO

(7)

In this way, even if the Kr is kept constant the
reaction rates behave differently depending on the
oxygen conditions. Whereas, θ1, θ2, θ3, θ4 keep
the same meaning as in Equation 4.
Summarizing, Model4s involves:

• 4 state variables:
x4s = [RCOD, SO, SNO, SNH ]T ;

• 8 kinetic and stoichiometric coefficients from
the ASM1
p = [YH , YA, iXB, KOH , KNO, KNH , KOA,
ηg]

T

• 5 new parameters:
n = [θ1, θ2, θ3, θ4, Kr]

T

Before being able to use this model for any prac-
tical purpose it first need to be calibrated. An ap-
propriate objective function is constructed, quan-
tifying the deviation of the model from the data
and the minimization of this function is obtained
by optimal selection of the parameter vector. It
is important to underline that the p vector is
maintained at its default value as proposed in
the ASM1, while the calibration procedure is only
performed with respect to n. It means that the
proposed model also leads to the reduction of
the adjustable parameters, significantly decreas-
ing the effort for its calibration.

The task at this point is to assess the practical
identifiability of the reduced model, that is per-
formed by analyzing the Fisher Information Ma-
trix (FIM). The FIM expresses the information
content in the experimental data:

FIM =

N∑

i=1

(
∂y

∂p
(ti))

T Qi(
∂y

∂p
(ti)) (8)

The terms ∂y
∂p

are the output sensitivity functions
and quantify the dependence of the model predic-
tions on the parameter values. They are central to
the evaluation of practical identifiability as they
are a major component of the FIM, and hence also
of the parameter estimation covariance matrix.
An easy way to investigate it could be plot the
sensitivity equations, however stronger evidence
of proportionality between sensitivities can be ob-
tained by calculation of the rank of the Fisher
information matrix. In our case, FIM is a full rank
matrix considering both aerobic and anoxic zone
models, meaning that nonlinear dependency exists
and that the resulting model is fully identifiable.

As mentioned, in order to test the dynamic be-
havior of the obtained models two situations are
considered: with and without equalization basin
before the activated sludge process considering,
in both cases, periodic influent loads.
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Fig. 1. Test motion with periodic “equalized” (left
column) and “non-equalized” (right column)
data. Models with 6 state variables (dot)
and with 4 state variables (dot-dashed) are
compared with the ASM1 (solid)

The models have been running for 30 simulation
days using the weighting functions for both load
and flow and plotting only the last 5 days, cor-
responding to stable regimes, to evaluate the test
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Fig. 2. Frequency responses to a sinusoidal influent COD for models with 6 state variables (dot-dashed)
and with 4 state variables (dashed) are compared with the ASM1 (solid).

motions in these conditions. In Figure 1, we report
the behavior of the main effluent concentrations
in the wastewater treatment plant obtained with
ASM1, Model6s and Model4s. It should be noted
that when six states are considered the agreement
is better than when only four are taken into ac-
count. This is quite obvious if we consider the
assumptions made. Anyway, the results obtained
with Model4s are promising, both because the
mismatch between the two reduced models is not
so large if one considers that Model4s has four
states and only five adjustable parameters, and
because it presents several advantages with re-
spect to Model6s. First of all, Model4s is based
on directly measurable state variables; in fact, the
influent RCOD is assumed to be the influent COD
measured from the wastewater treatment plant
and the same holds for the nitrogen compounds
and for the dissolved oxygen (which is assumed
equal to zero in the influent flow). Follows that
there is not need of an influent model and that
with respect to the ASM1 and to the Model6s as
well, there is not need of suspended solids mea-
surements. In fact, the secondary settler model is
a very simple model (always based on the Takács
model) that with only a percentage of the RCOD

considered particulate can represent the TSS con-
centration in the effluent and in the recycle line.
Eventually, the CPU simulation time is also con-
siderably reduced with respect to Model6s also.

4. FREQUENCY ANALYSIS

In the previous section, Model6s is considered as
the starting point for Model4s development and
the test motion analysis suggests a more detailed
analysis in order to validate this assumption. This
can be done by means of a frequency analysis that
allows a representation of system’s response to
sinusoidal inputs at varying frequency that can
be graphically analyzed using either Bode plots

or Singular value plots. The considered frequency
range is: ω ∈ [1e − 1 , 1e + 3] (1/d), this means
to consider a time range of 10 days to around 1.4
min.

In the first case, we look at the response to a
singular sinusoidal input; for simplicity, only ef-
fluent COD is plotted in Figure 2, being the most
representative of the system behavior. The gain
plot displays the ratio of the output amplitude to
the input one in decibels (dB) and the phase dis-
plays the time shift of the output in degrees. From
Figure 2a, we note that at low frequency the gain
of Model4s (dashed) is slightly different from that
of Model6s (dot-dashed) and ASM1 (solid). This
difference decreases when the frequency increases
until circa 55 (1/d), while for higher frequency the
asymptote of the reduced models is quite different
from that of the ASM1. The same considerations
hold for the phase plot: a different phase lag be-
havior for Model4s is evident when it is compared
to the other models. In Figure 2b influent flow
rate variations are also considered (representing
the absence of the equalization basin) and we note
that Model6s presents the same gain of ASM1
in the whole frequency interval, while the sim-
plest model shows a mismatch that increases at
high frequency values. Conversely, the phase lag
agreement between Model4s and ASM1 is good for
frequency values lower than 1 (1/d). Considering
that the input frequency in a real plant is circa
1 (1/d), we can conclude that the behavior of
Model4s is satisfactory when the COD and flow
rate are varied.

For the sake of completeness, frequency response
for every influent concentration should be inves-
tigated for MIMO systems. This can be made
with a singular value plot, which provides a means
to generalize this information. Furthermore, by
means of this plot effects of influent flow rate
variations can be also explored in conjunction of
the other input variations; we can consider in a
more comprehensive way the presence or not of an
equalization basin before the activated sludge pro-
cess. In Figure 3a, the singular value plot for the
effluent COD is considered when the equalized sit-
uation is occurring. We observe that the evidences
noted in Figure 1a are justified by the singular
value analysis; in fact we can note the different
behavior of Model4s with respect to ASM1 and
Model6s. The mismatch decreases when the fre-
quency ranges in a small neighborhood of 1e1, but
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Fig. 3. Sigma plots non-varying (a) and varying (b) influent flow rate for models with 6 state variables
(dot-dashed) and with 4 state variables (dashed) are compared with the ASM1 (solid).

then the difference between the simplest model
and the others increases significantly. The same
considerations hold by analyzing Figure 3b, which
is in agreement with the results plotted in Figure
1.

5. CONCLUSIONS

In this work we considered the bioreactor model
in an activated sludge process, and starting from
the ASM1, we obtained a simpler model with
only four state variables which is able to recon-
struct the main effluent pollutant concentrations
from a wastewater treatment plant. The simplest
model, obtained by a modal reduction followed by
physical consideration, is able to qualitatively and
quantitatively, especially when an equalization
basin is present, capture the main feature of the
system dynamics and shows several advantages.
In fact, it consists of only four state variables, five
adjustable parameters, and describes the dynam-
ics of variables, which can be directly measured in
the plants.
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NOMENCLATURE

r Continuation parameter
A Linearized system matrix
COD Chemical Oxygen Demand
Q Volumetric Flowrate
TKN Total Kjeldahl Nitrogen
TSS Total Suspended Solids
fNH Ammonia/TKN ratio

ASM1 State Variables
SI Soluble inert organic matter
XI Particulate inert organic matter
SS Readily biodegradable substrate
XS Slowly biodegradable substrate
XBH Active heterotrophic biomass
XBA Active autotrophic biomass

XP Particulate products from biomass decay
SO Oxygen
SNO Nitrate and nitrite nitrogen
SNH Free and ionized ammonia nitrogen
SND Soluble biodegradable organic nitrogen
XND Particulate biodegradable organic nitrogen

218


