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Abstract: This paper deals with adaptive control of the Continuous Stirred Tank Reactor 
(CSTR) which is a typical member of nonlinear processes with lumped parameters. 
Since the controller is an adaptive one, parameters of the controller are estimated 
recursively during the control with different recursive least squares methods. A 
polynomial approach used for the controller synthesis has satisfied control requirements 
and moreover, it could be used for systems with negative properties such as 
nonlinearity, non-minimum phase etc. Delta models were used as a external linear 
model of the nonlinear process. There were used two control configurations with one 
and two degrees-of-freedom for controller design. Copyright © IFAC 2007 
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1. INTRODUCTION 

Most of the processes in the technical praxis has 
nonlinear properties and usage of the classical 
control strategies, where parameters of the controller 
are fixed, results in very limited results or non-
optimal control for the nonlinear processes. This 
paper shows the simulation results of adaptive 
control of nonlinear lumped-parameters model 
represented by the Continuous Stirred Tank Reactor 
(CSTR) with so called van der Vusse reaction inside 
the reactor (Chen, et al., 1995). Static analysis 
presented in (Vojtesek, et al., 2004) have shown high 
nonlinearity of this process in the steady-state. On 
the other hand, dynamic analysis results in choosing 
of an External Linear Model (ELM).

A polynomial approach used for the controller 
synthesis has satisfied control requirements and 
moreover, it could be used for systems with negative 
properties such as non-minimum phase behaviour or 
for processes with time delays. Connected with LQ 
control technique, it fulfills the requirements of 
stability, asymptotic tracking of the reference signal 
and compensation of disturbances (Kucera, 1993). 
Resulting controller is strictly proper. 

The external delta models (Middleton and Goodwin, 
1990) were used for parameter estimation of the 
nonlinear system. Although delta models belong to 
the range of discrete models, parameters of these 
models are equal to parameters of their continuous-
time counterparts up to some assumptions (Stericker 
and Sinha, 1993). Various types of identifications 
were used in the estimation part. Recursive Least 
Squares (RLS) methods without the forgetting, with 
the exponential forgetting and the directional 
forgetting (Fikar and Mikles, 1999) respectively 
were used in this case. 

Two control configurations were considered - one 
degree-of-freedom (1DOF) configuration which has 
controller only in the feedback part and two degrees-
of-freedom (2DOF) configuration with feedback and 
feedforward parts (Grimble 1994). 

All proposed control strategies were verified by 
computations and simulations in mathematical 
software MATLAB, version 6.5. The simulation 
results can demonstrate suitability of this control 
Next step should be verification on a real model. 
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2. ADAPTIVE CONTROL 

Adaptive control is one way to overcome problems 
with controlling of nonlinear systems. “Adaptivity” 
is derived from the living matters which adapts their 
behaviour and living to the behaviour of the 
neighbourhood. Each adaptation means loss of the 
energy and living matterms can minimize this loss 
with increasing number of continuous learning. This 
repetition is generally accumulation of the 
information. There are several types of adaptive 
systems described in (Bobal, et al., 2005). The 
adaptive approach used in our case is based on 
choosing of the External Linear Model (ELM) of the 
nonlinear process, parameters of which are estimated 
recursively and the parameters of the controller are 
then recomputed in every step according to estimated 
parameters of the ELM. The resulted controller 
works in continuous-time and in our case its structure 
corresponds to the structure of the real PID 
controller.

2.1 External Linear Model (ELM) 

ELM as a presentation of a real system is usually 
described by continuous-time transfer function 
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where the condition of the properness is: 
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And their coefficients ai and bj are estimated 
recursively during the control.  

There can be used different types of ELM, e.g. 
continuous-time (CT) models (Vojtesek and Dostal, 
2005), ordinary discrete models or -models. There 
was used -model as an ELM in this work. This 
model belongs to the class of discrete models but its 
properties are different according to the classical 
discrete model in Z-plain. If we want to convert  
Z-model to –model, we must introduce a new 
complex variable  computed as (Mukhopadhyay, et
al., 1992)
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We can obtain infinitely many models for optional 
parameter  from interval 0  1, however 
forward -model were used in this work which has 
operator computed via 
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ELM should be then generally described by equation 
a y t b u t  (6) 

Where t’ denotes discrete time and  is the operator. 
With decreasing value of the sampling period Tv
parameters of polynomials a’( ) and b’( ) approach 
to the parameters of the continuous-time model (1) 
(Stericker and Sinha, 1993). 

Substitution t’ = k – n for k n in the equation (6) 
transfer this equation to  
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And we can introduce simplification 
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ARX (Auto-Regressive eXtrogenous) was used for 
identification. This model should be described by the 
differential equation

ˆ 1Ty k k k e k  (9) 
Where e(k) denotes immeasurable disturbances and 

 is regression vector 
( 1) ( ), ( 1), ..., ( 1),T k y k n y k n y k

( ), ( 1),..., ( )u k n u k n u k n m  (10) 
and  is vector of parameters 
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The most frequently used model is ARX model 
because it uses only directly measured quantities, 
predicted output ŷ  is only a function of measured 
data and simple linear regression should be used for 
parameter estimation.  

2.2 Parameter estimation 

As it is written above, adaptivity of the control 
process is fulfilled by the continuous parameter 
estimation during the control. Recursive Least 
Square (RLS) method was used for the parameter 
estimation. This method is well known and it does 
not need too much data storing during computation. 
The three different recursive identification methods 
were used and they are shown beneath. 

Ordinary Recursive Least Squares (ORLS) method is
one of basic identification methods and it can be 
formally written by the set of equations (Fikar and 
Mikleš, 1999):
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Where  denotes a prediction error and P is a 
covariance matrix. 

202



RLS Method with Exponential Forgetting is 
modification of ORLS. Modifications are used 
mainly in the cases where parameters of the 
identified system can vary during the control which 
is typical for nonlinear systems. Exponential 
Forgetting is based on the modification of the 
covariance matrix P by the equation

1 1

1 11 1
1 1 1

T

T

k k k k
k k

k k k k k
P P

P P
P

(13)

Several types of exponential forgetting can be used, 
e.g. like RLS with constant exp. forgetting, RLS with 
increasing exp. forgetting etc. RLS with the changing 
exp. forgetting is used for parameter estimation, 
where the changing forgetting factor 1 is computed 
from the equation 

2
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Where K is small number, e.g. K = 0.001. 

RLS with Directional Forgetting (Kulhavy a Karny, 
1984) is used in the cases where RLS methods with 
exponential forgetting can become unstable. In this 
case, parameters are being forgotten only in the 
direction from which new information came. A 
computation algorithm can be formulated by the 
following equations: 
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Where 1 is computed similar as in Eq. (14). 

2.3 Control System Configuration 

There were used two control system configurations 
displayed in Fig. 1 and Fig. 2. The first configuration 
with one degree-of-freedom (1DOF) shown in Fig. 1 
has controller Q only in the feedback segment.  

v

-
e uw y 

Fig. 1: 1DOF control configuration 

v
- u

w

y

Fig. 2: 2DOF control configuration 

On the other hand, configuration with two degrees-
of-freedom (2DOF) in Fig. 2 has one part of the 
controller in the feedback segment – Q and the 
second part R of the controller is in feedforward 
segment. 

G in both configurations denotes transfer function of 
controlled plant, w is the reference signal (wanted 
value), v is disturbance, e is used for control error, u
is control variable and y is a controlled output. 

2.4 Polynomial methods 
Transfer functions of the feedback (Q) and 
feedforward (R) parts of the controller are 

;
q s r s

Q s R s
s p s s p s

 (16) 

where parameters of the polynomials p(s), q(s) and 
r(s) are computed from diophantine equations 
(Kucera, 1993): 

a s s p s b s q s d s

t s s b s r s d s
 (17) 

Parameters of the polynomials a(s) and b(s) are 
known from the recursive identification and 
polynomial d(s) is a stable polynomial. Polynomial
t(s) in the second diophantine equation is an additive 
stable polynomial with random coefficients, because 
these coefficients are not used for computing of 
coefficients of the polynomial r(s) in 2DOF 
configuration. All these equations are valid for step 
changes of the reference and disturbance signals. 
The feedback controller Q(s) ensures stability, load 
disturbance attenuation for both configurations and 
asymptotic tracking for 1DOF configuration. On the 
other hand, feedforward part R(s) ensures asymptotic 
tracking in 2DOF configuration. A demand for a 
stable controller is fulfilled if the polynomial p(s) in 
the denominators of (16) is stable. Inner properness 
holds if all transfer functions are proper. Transfer 
function Q(s) in (16) is proper if 

deg deg 1q p   (18) 
Degrees of the polynomials p and q are computed 
with respect to conditions (2), (18) and solvability of 
the diophantine equations (17) as follows 

deg deg , deg deg 1, deg 0q a p a r  (19) 
Roots of the polynomial d(s) on the right side of the 
equations (17) are poles of the closed-loop and the 
control quality is determined by the placement of 
these poles. There are several ways for choosing of 
the polynomial d(s) on the right side of equations 
(17). One approach is to choose n different or 
multiple roots 

/ 2 / 2
1 2;m m md s s d s s s (20)

where m is degree of the polynomial d(s).

This method has one disadvantage, there is no rule 
how to choose roots . One way how to overcome 
this problem is to connect the choosing of the 
polynomial d(s) with parameters of the controlled 
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system. This can be done through spectral 
factorization (Vojtesek, et al., 2004).

The third approach, which was used in our case 
combines spectral factorization and Linear Quadratic 
(LQ) tracking. The LQ approach is based on an 
optimal control theory and in addition to the basic 
control requirements it minimize the cost function in 
the complex domain 

1 * *
2

j

w w
j

J E s E s U s U s ds
j

 (21) 

Where w > 0 and μw  0 are weighting coefficients, 
E(s) and U(s) are transfer functions of the error and 
input variables respectively. The polynomial d(s) is 
in this case 

d s g s n s  (22)  
where polynomials n(s) and g(s) are computed from 
the spectral factorization 

* * *

* *

w wa f a f b b g g
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where f(s) is for the control variable u(t) and 
disturbance v(t) from the ring of step functions  
f(s) = s.

The resulted controller is strictly proper and the 
degree of the polynomial d(s) is computed via 

deg deg 2deg 1d g n a  (24) 

3 SIMULATION EXPERIMENT 

Proposed control strategy was validated by the 
simulation experiment on the nonlinear system 
represented by the Continuous Stirred Tank Reactor 
(CSTR). The reaction inside the reactor is called van
der Vusse reaction can be described by the following 
reaction scheme (Chen, et al., 1995): 
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The graphical scheme of this reactor can be seen in 
Fig. 3 
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co
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Fig. 3: Continuous Stirred Tank Reactor (CSTR) 

The mathematical model of this reactor is described 
by the following set of ordinary differential 
equations (ODE): 
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This set of ODE together with simplifications then 
mathematically represents examined CSTR reactor. 
The model of the reactor belongs to the class of 
lumped-parameter nonlinear systems. Fixed 
parameters of the system are shown in Table 1. 

Table 1. Parameters of the reactor
k01 = 2.145·1010 min-1

k03 = 1.5072·108min-1.mol-1

E2/R = 9758.3 K
h1 =-4200 kJ.kmol-1

h3 = 41850 kJ.kmol-1

Vr  = 0.01 m3

cpr = 3.01 kJ.kg-1.K-1

cpc = 2.0 kJ.kg-1.K-1

U  = 67.2 kJ.min-1m-2K-1

cA0 = 5.1 kmol.m-3

Tr0 = 387.05 K

k02 = 2.145·1010 min-1

E1/R  = 9758.3 K
E3/R = 8560 K
h2 = 11000 kJ.kmol-1

r = 934.2 kg.m-3

qr = 2.365·10-3 m3min-1

Qc = -18.5583 kJ.min-1

Ar = 0.215 m2

cB0 = 0 kmol.m-3

mc = 5 kg

The reaction heat (hr) in eq. (28) is expressed as: 
2

1 1 2 2 3 3r A B Ah h k c h k c h k c  (30) 
where hi means reaction enthalpies. 

Nonlinearity can be found in reaction rates (kj) which 
are described via Arrhenius law: 

0 exp , for 1, 2,3j
j r j

r

E
k T k j

RT
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where k0 represent pre-exponential factors and E are 
activation energies.

Static analysis has shown (Vojtesek, et al., 2004), 
that system has an optimal working point for 
volumetric flow rate of the reactant qr = 2.365×10-3

m3.min-1 a heat removal Qc = -18.56 kJ.min-1. The 
difference between actual and initial temperature of 
the reactant Tr was taken as controlled output and 
changes of the heat removal Qc was set as control 
input, i.e. 

100 %

s
r r

s
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s
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y t T t T t K
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u t

Q t
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On the other hand, dynamic analysis results in ELM 
represented by a second order transfer function with 
relative order one, which is generally: 

1 0
2
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a s s a s a

 (33) 
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Equation (33) can be rewritten for the identification 
to the form of the differential equation   

1 0

1 0

1 2

1 2

y k a y k a y k

b u k b u k
 (34) 

where y  is recomputed output to the -model: 
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where Tv is the sampling period, the data vector is 
1 1 , 2 , 1 , 2T k y k y k u k u k (36)

and the vector of estimated parameters  

1 0 1 0
ˆ ˆˆ ˆ ˆ, , ,T k a a b b  (37) 

could be computed from the ARX (Auto-Regressive 
eXtrogenous) model  

ˆ 1Ty k k k  (38) 
by the recursive least squares methods described in 
part 2.2.  

Degrees of the polynomials p(s), q(s) r(s) and d(s)
are then computed via (19) and (24): 
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Polynomials g(s) and n(s) in the equation (22) are  
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and their coefficients are computed as 
2 2 2

0 0 1 0 2 0 1

2
2 1 3 1 0 3

2 2
0 0 1 0 1 0

, 2 ,

2 2 , ,

, 2 2

w w w

w w

g b g g g a b

g g g a a g

n a n n a a

 (41) 

Transfer functions of the feedback and feedforward 
parts of the controller for 1DOF and 2DOF 
configurations are 

2
2 1 0 0

2 2
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;
q s q s q r

Q s R s
s s p s p s s p s p

(42)

Where parameters of the polynomials q(s) and p(s)
by the comparison of the coefficients of the s-powers
a in diophantine equations (17). 

4. SIMULATION RESULTS 

All simulation experiments took 500 min and 5 step 
changes were done during this interval. The first 
simulation study was done for various values of the 
weighting factor w in (41) for both 1DOF and 2DOF 
configurations. As you can see in Fig. 4, simulation 
is quicker with the decreasing value of the factor w.
On the other hand, a low value of w results in small 
overshoots of the output response. Output responses 
for 2DOF configuration in Fig. 5  have a few 
problems at the very beginning of the control. This is 
caused by the inaccurate parameter estimation which 

has a low amount of initial information about the 
system.    
Fig. 6 compares control with 1DOF and 2DOF for 
weighting factor w = 0.02. As it can be seen, the 
only difference is that 2DOF has better behaviour at 
the beginning in this case. The second advantage is 
that 2DOF has a smoother course of the action value 
– see Fig. 7. On the contrary, 1DOF configuration is 
a little bit quicker than 2DOF. 
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Fig. 4: Course of the output variable y(t) for various 

weighting factors w, 1DOF configuration 
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Fig. 5: Course of the output variable y(t) for various 

weighting factors w, 2DOF configuration 
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Fig. 6: Course of the output variable y(t) for 1DOF 
and 2DOF configurations, w = 0.02 

The last analysis was done for three recursive least 
squares methods described in part 2.2. Fig. 8 clearly 
shows, that usage of forgetting has no effect on the 
output response which is the same for all 
identifications. Fig. 9 shows course of the identified 
parameters during the control which again is the 
same for all types of identifications. Identification 
has problems only at the very beginning and that is 
why the data in Fig. 9 are cut. 
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Fig. 7: Course of the input variable u(t) for 1DOF 

and 2DOF configurations, w = 0.02 
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Fig. 8: Course of the output variable y(t) for various 
types of identification, w = 0.02 
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Fig. 9: Course of the identified parameters a’1, a’0,
b’1 and b’0 for various of identification, w = 0.02 

5. CONCLUSION 

This paper shows simulation results for adaptive 
control of a nonlinear lumped-parameters system 
represented by the CSTR reactor. Used adaptive 
control is based on the choosing of the external linear 
model in the range of delta models parameters of 
which are estimated recursively during the control. 
Three different recursive least squares methods were 
used for parameter estimation and two control system 
configurations with one degree-of-freedom (1DOF) 
and two degrees-of-freedom (2DOF). Presented 
results shows good control responses, the only 
problem is at the beginning of the control when we 
have less amount of information about the system. 

Course of the output temperature is quicker with the 
decreasing value of the weighting factor w but there 
should be some small overshoots for low value of w.
Comparison of 1DOF and 2DOF configurations 
presents slower course of the output variable for 
2DOF but changes of the action value are smoother. 
The last analysis compares responses for different 
identifications and as it can be seen, there is no need 
for using forgetting factors because results are nearly 
the same. 
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