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Abstract: In this contribution, the open-loop optimal control (dynamic optimization) 
of a Simulated Moving Bed (SMB) chromatographic separation process is 
considered. The objective is to compute the optimal feed concentration and/or feed 
flow rate, over each switching period, with maximum flexibility. This problem is 
solved numerically using the combination of the control vector parameterization 
scheme with suitable state-of-the-art global nonlinear programming problem solvers. 
The advantages of the proposed approach are illustrated through the solution of two 
case studies, achieving significant improvements in the process productivity when 
compared to traditional feeding profiles. Copyright © 2007 IFAC
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1. INTRODUCTION 

The separation of the components of mixtures is an 
operation of key importance in many industrial areas 
(pharmaceutics, food, fine chemicals, etc.). In 
comparison to traditional batch processes, the 
continuous counter-current chromatographic 
techniques can achieve higher productivity, purity 
and product recovery, decreasing the desorbent 
consumption and keeping a constant product quality. 
However the movement of the solid phase is hardly 
realizable and, in practice, the Simulated Moving 
Bed (SMB) process is usually applied (Ruthven and 
Ching, 1998; Engell and Toumi, 2005). 

During recent years a number of methods have been 
proposed to select the operation conditions in an 
attempt to maximize products purity or process 
productivity. 

The “Triangle Theory” (Mazzotti et al., 1997) 
combines the material balances at the nodes of the 
SMB unit with the results of the Equilibrium Theory 
for Langmuir systems, to provide the constant flow 
rate ratios yielding complete separation. 
Unfortunately these operating conditions are not 
robust to small perturbations so that adequate control 
schemes should be used (as reviewed by Engell and 
Toumi, 2005). 

It was soon realised that the modulation of certain 
operating conditions, instead of keeping them 
constant, could largely improve both productivity 
and products purity.  

In this regard, the VARICOL (VARiable length 
COLumn, Ludemann-Hombourger and Nicoud, 
2000) process makes use of a periodic but 
asynchronous shift of the ports to achieve a better 
allocation of the adsorbent and hence a reduced 
desorbent consumption. In this process, the number 
of columns per zone varies during a switching time, 
returning to the starting initial value at the end of the 
period. In the early 90s, Kearny and Hieb patented 
the modulation of several of the process flow rates, 
which resulted in a significant increase of products 
quality. A further development of this approach, the 
so-called PowerFeed process, was proposed by 
Zhang et al. (2003) who computed the optimal time-
varying flow rates to maximize both product purities, 
revealing that the objective function is more sensitive 
to feed flow rate changes. As an alternative, 
Schramm et al. (2003a) proposed the so-called 
ModiCon that, based on the predictions of the 
nonlinear wave propagation theory, suggests the 
modulation of the feed concentration injected to the 
system during the switching time. It is particularly 
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remarkable that concentration modulation 
outperforms feed flow rate modulation (Schramm et 
al., 2003b). 

In this contribution, we present the statement and 
solution of two open-loop optimal control problems 
(OCP), using the modulation of the feed 
concentration and the feed flow rate as control 
variables in order to either maximize the process 
productivity, subject to specific raffinate purity 
requirements, and the system dynamics.  

Due to the distributed nonlinear nature and the 
presence of coupled phenomena in the rigorous SMB 
model, the resolution of the problems becomes a 
challenging task. Thus, we apply state of the art 
solvers within a control vector parameterization 
(CVP) scheme, in order to both efficiently simulate 
the complex cyclic dynamics and surmount 
optimisation convergence problems. To illustrate the 
advantages of the optimal operating policies 
computed with these numerical techniques, the 
results are compared to those obtained using the 
classical ModiCon approach. 

2. SIMULATED MOVING BED (SMB) PROCESS  

2.1 SMB process description.

The Simulated Moving Bed (SMB) process consists 
of a number of chromatographic columns connected 
in series and arranged in four zones as represented in 
Figure 1.  

Fig 1. Simulated Moving Bed process. 

The continuous separation of the components of the 
mixture takes place via the apparent counter-current 
flow between the solid and the liquid phases. The 
initial mixture (Feed) is introduced between zones II 
and III, the raffinate, essentially composed by the 
less adsorbed component of the mixture, is obtained 
between zones III and IV, and the extract, containing 
mainly the more adsorbed component, is extracted 
between zones I and II. The separation of the 
components occurs mainly in zones II and III, while 
the adsorbent regeneration and the desorbent 
recycling are the principal goals of sections I and IV, 
respectively.

2.2. SMB process model.

The system is considered as a set of static 
chromatographic columns with periodic switching 
times. The concentration of the component i in the 

column j ( ,i jCs ) is given by the mass balance of the 
solid phase in this column: 
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where t is the time, FSk  the mass transfer coefficient. 
*
,i jCs  is the equilibrium concentration defined, for 

instance, by a Langmuir competitive adsorption 
isotherm: 
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In the liquid phase, the concentration of i in the 
column j ( ,i jC ) is described by the mass balance: 
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The right-hand-side terms in (3) represent the 
dispersive liquid transport, the convective transport 
and the mass transfer between the liquid and solid 
phases, ,L i jD  and ju  being the axial dispersion 
coefficient and the fluid speed, respectively. 

Due to the cyclic repositioning, the input and 
output ports are moved one column in the liquid flow 
direction every switching interval t. Thus, the 
concentration profiles in the column j at the 
beginning of a switching period p are equal to those 
obtained in the column j+1 at the end of the previous 
period (p-1):

, , 1 1 1( 0, ) ( , )i j p j i j p jC t z C t t z            (4) 

The boundary conditions for the mass balance in the 
liquid phase are of Dirichlet type at the beginning of 
each column. 

, 0,( , 0)i j i jC t z C             (5) 

A simple advection equation is used at the end of 
each column to express zero-dispersion conditions: 

, ,( ) ( )i j i j
j

C C
z L u z L

t z
           (6) 

To complete the specification of the boundary 
conditions, it is necessary to express the mass 
balance of each component at the transition between 
two consecutive zones. 

For more details on the model see Haag et al. (2001). 

2.3. Numerical methods for simulation.

In this contribution the numerical method of lines 
(NUMOL, Schiesser, 1991), as implemented in the 
MATMOL toolbox (Vande Wouwer et al., 2004), is 
used for solving the PDEs of the model. The spatial 
derivatives have been approximated by fourth-order 
finite difference formula, using biased-upwind finite 
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difference schemes for the convective terms and 
centred finite differences for diffusive terms (Haag et 
al., 2001). 

After applying NUMOL, the evolution of the field is 
described by a large scale, sparse and possibly stiff 
set of ordinary differential equations whose solution 
requires the use of a sparse implicit initial value 
problem solver (IVP) to enhance both the stability 
and the efficiency of the solution process. 

3. DYNAMIC OPTIMIZATION OF SMB  

3.1 Mathematical statement

The open loop optimal control problem consists in 
the computation of a set of time-dependent decision 
variables in order to minimize (or maximize) a pre-
defined objective functional over a certain finite time 
horizon, while verifying the existing constraints. 

This work presents the formulation and solution of 2 
problems, OCP1 and OCP2, formulated as follows: 

Find the feed concentration ( )FEEDC t  (and the feed 
flow rate, FEEDQ , for OCP2) along t  [t0, tf] to 
maximize the process productivity PR  defined as 
the amount of feed separated (equal to the amount of 
product) per amount of necessary adsorbent: 

max ;
(1 )FEED

FEEDPRODUCT FEED

C
ADSORBENT

m Q CPR PR
m NC S L

    (8) 

subject to: 

- the system dynamics: Eqns.(1)-(6) 

- lower and upper bounds on the control variables: 

0 1.0 %FEEDC vol             (9) 

0 25 ( 2)FEEDQ ml/min only for OCP         (10) 

The upper bound on the feed concentration has been 
chosen taking into account the upper limit of 
solubility of the mixture, while the maximum feed 
flow rate is limited by the maximum allowable 
pressure drop in the plant. 

- and a constraint related to the minimum average 
raffinate purity at final time: 

2

, , ,
1

85%Raf j Raf i Raf Raf min
i

Pur C C Pur         (11) 

j being  the less adsorbed component. 

3.2 Numerical methods for dynamic optimization.

The state-of-the-art direct methods transform the 
original infinite dimensional optimization problem 
into a non-linear programming problem (NLP). The 
complete parameterization (CP) or the multiple 
shooting approaches parameterise both controls and 
states, becoming usually rather expensive for 
distributed systems. In contrast, the control vector 
parameterization (CVP, Vassiliadis et al., 1994) only 

discretises the controls, resulting the most convenient 
for large-scale systems with complex dynamics,
particularly those related to distributed parameter 
systems (Balsa-Canto et al., 2004) such as the SMB 
case. CVP proceeds dividing the controls in a number 
of elements ( ) and approximating each element via a 
low order polynomial. The polynomial parameters 
become the decision variables in the NLP, whose 
solution can be approached with a standard solver. 

In this regard, Successive Quadratic Programming 
(SQP) methods are the most popular. Nevertheless 
they can lead to suboptimal (local) solutions in 
presence of non convexities, i.e. multiple optima 
(Banga and Seider, 1996), as it will be illustrated 
later for the case studies considered, especially when 
started far away from the global optimum. To 
surmount these difficulties several global 
optimization techniques have been developed.  

The proposed approaches may be classified in two 
main groups: deterministic and stochastic methods. 
The first methods, take advantage of the problem 
structure and ensure global convergence, but only for 
problems that comply with a set of requirements 
(such as smooth and twice continuous differentiable 
functions), which are not ensured in the present 
cases. Alternatively, stochastic and hybrid stochastic-
local methods, although they can not guarantee 
global optimality, offer the option of achieving 
solutions close to the global ones (very often the best 
known solutions) in relatively short computation 
times. This makes them very attractive for dynamic 
optimization purposes (Banga and Seider, 1996). 

4. RESULTS  

We consider the particular case where the two 
components of a mixture (cyclopentanone and 
cyclohexanone) are separated, cyclopentanone being 
the more adsorbed component in the liquid phase. 
The fixed operation conditions are summarized in 
Table 1 and the model parameters estimated based on 
experimental data collected on a pilot plant available 
at the Max Planck Institute of Magdeburg (Germany) 
can be found in the work by Grosfils et al., 2004.  

Table 1 Fixed operation conditions of the SMB 
process

t , ft  Switching & final time   180s, 11520s 

IIQ , IVQ  Flow rates in zones II,IV 39.39,43.40ml/min 

FEED
REF

Q    Feed flow rate (ref.value)  17.74 ml/min 

DESORBQ  Desorbent flow rate 20.00 ml/min 

Taking into account the complexity of the model of 
the SMB process and the presence of constraints in 
the optimal control problems formulated above, the 
selection of a robust and efficient optimization 
method is of key importance. In this concern, we 
used the recently developed Nonlinear Dynamic 
Optimization Toolbox (NDOT, García et al., 2005) 
implemented in Matlab, which is based on the use of 
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the CVP scheme and offers a large variety of state of 
the art IVP and NLP solvers. So as to increase 
computational efficiency, the IVP solution is 
implemented in compiled Fortran 77 and is called 
from Matlab through suitable gateways (mex-files). 

Regarding the SMB process simulation, the NUMOL 
method as described above was considered. A grid of 
20 nodes over each column was finally selected as it 
offers a good compromise accuracy/computational 
cost. Since there are two columns per zone, this 
results in a set of 640 ODEs solved here using 
LSODES (Hindmarsh, 1983) a BDF method which 
exploits the sparsity pattern of the ODE set Jacobian. 

Concerning the solution of the NLPs, from the 
different possibilities available in our toolbox, the 
SQP method SNOPT (distributed as part of 
TOMLAB, Holmström et al., 2004) was selected as 
the first candidate to solve the proposed case studies, 
as it has been particularly successful for the solution 
of a set of challenging OCPs (García et al., 2005). 
SNOPT as a local NLP method requires a starting 
initial guess. In order to check for the possible 
multimodality of the problems under consideration a 
set of 50 initial guesses were used in a multistart 
procedure. As it will be illustrated later, all problems 
resulted to be non convex, which lead us to use a 
population based stochastic algorithm, Differential 
Evolution (DE, Storn and Price, 1997), to guarantee 
convergence to the best  possible solution.  

4.1 Case Study 1 (OCP1).

The solution of the OCP1 was first approached using 
a multistart strategy with SNOPT. The results show 
different productivities depending on the initial 
guess, revealing the presence of several sub-optimal 
solutions (Figure 2). This fact clearly indicates the 
need of using global optimization strategies to 
surmount convergence to a local minimum. 
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Fig 2. Histogram of the multistart strategy resulting 
from the dynamic optimization of OCP1 with =2
and SNOPT (50 runs, JBEST=3.016·10-3 m3/(m3·s)).

The stochastic global optimisation strategy DE was 
then applied using two variable-length time intervals 
since the practical implementation of more intervals 
would be difficult. The process productivity value 
obtained after 4 hours of computation was 3.313·10-3

m3/(m3·s) with a raffinate purity of 85.00% (active 
constraint). The corresponding optimal control 
profile is shown in Fig. 3.  

0 20 40 60 80 100 120 140 160 180

0

0.2

0.4

0.6

0.8

1

Time / s

C
on

tro
l, 

C
FE

E
D

 / 
%

vo
l

Fig 3. Optimal control profile for OCP1. 

In the first period of the corresponding optimal 
control profile (t < 72.3s), the feed supplied to the 
unit is pure solvent, while in the second part (72.3s 
t < 180s) the feed concentration reached the 
maximum value (1%vol). The corresponding spatial 
evolution of the concentrations is shown in Fig. 4. 
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Fig 4. Spatial evolution of  concentrations for OCP1.

These results are in agreement with the wave theory 
which states that the components of a mixture go 
across the SMB unit as nonlinear travelling waves 
and the movement of these waves affect the purities 
of the output streams (Schramm et al., 2003b). The 
wave propagation velocities influence the stream 
purities via the modification of the wave fronts. 

It is clear that the modulation of the feed 
concentration has a direct influence on the fronts in 
zone III. The zero feed concentration at the 
beginning of the switching period involves a 
reduction of the wave height in zone III, which leads 
to a smaller propagation velocity of the wave of the 
more adsorbed component (black lines) than in the 
traditional process with constant feed concentration. 
Then, the feed concentration is increased and the 
opposite variation occurs, however not to the same 
extent, so that it does not balance the previous effect. 
Moreover, the front velocity modification is 
enhanced by the fact that at the end of every 
switching period the feed port is moved by one 
column in the direction of the fluid, so that the wave 
located in zone III is placed in zone II, just to the left 
of the feed node. Therefore the global effect of the 
modulation of the feed concentration is the decrease 
of the wave velocity propagation and the 
improvement of the raffinate purity. 
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Optimal solution
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Table 2 Comparison of OCP1 results with the 
classical SMB process and standard ModiCon.

Classical Standard  OCP1 
 Process ModiCon
103 PR[m3/(m3·s)]  1.690 2.769 3.313 

RafPur [%] 85.00 96.06 85.00 
% Improvement -- a 64% a96,b20

a Compared to classical SMB process 
b Compared to standard ModiCon 

The results of OCP1 are compared in Table 2 to 
those obtained through the optimization of the 
classical SMB process ( =1) and the standard 
ModiCon procedure. The classical process operated 
with an optimal feed concentration of 0.3052%vol 
led to PR=1.690·10-3 m3/(m3·s) and 85% purity, 
while the recommended ModiCon two fixed length 
steps profile (Schramm et al., 2003a) resulted in a PR 
value of 2.769·10-3 m3/(m3·s) with a 96.06% purity. 
The productivity using a four-step profile as 
proposed by Schramm et al. (2003b) is considerably 
smaller (1.3845·10-3 m3/(m3·s)), but corresponds to a 
very high purity (>99.999%). Note that the reported 
results do not include a re-optimization of the 
internal flow rates, via a regulation method as in  
Schramm et al. (2003b). 

To complete the study of OCP1, it is interesting to 
modify the minimum required value of the raffinate 
purity in order to see the impact of this constraint. 
For different purities, the optimal feed concentration 
profiles only differ in the time of switching between 
the zero and maximum feed concentration. Thus, this 
time of switching becomes the unique degree of 
freedom in the two-step dynamic optimization 
problem.  

Figure 5 presents the evolution of the process 
productivity and the raffinate purity as functions of 
the time of switching. It is apparent from this Figure 
that the methodology proposed in this work allows 
the computation of the optimal solution 
independently of the desired purity value, whereas 
the two-step ModiCon solution provides a single 
reachable solution. This ModiCon solution would be 
suboptimal (for 96.06%RafPur ), infeasible (for 

96.06%RafPur ) and optimal only when the 
required purity is 96.06%. This emphasizes how 
adding flexibility in the solution of the optimal 
problem results in added flexibility for the process 
operation since a specific time of switching is related 
to a purity and a productivity. 

Fig 5. Evolution of the raffinate purity and the 
productivity versus the time of switching (OCP1 with 
two feed steps). 

4.2. Case Study 2 (OCP2).

In this case study, the feed flow rate is considered as 
an additional control variable. Therefore the 
following decision variables are now calculated: the 
first step duration, the two steps heights for the feed 
concentration and the feed flow rate.  

Using DE a process productivity of 3.363·10-3

m3/(m3·s) is obtained. This maximum PR 
corresponds to a zero feed concentration at the 
beginning of the switching time followed by a 
saturated concentration (1%vol) in the second part of 
the period (as in the best results of OCP1). However, 
in this case, the first feed concentration step has a 
shorter duration (t = 47.0s) to promote higher 
productivity, while the value of the optimal feed flow 
rate is smaller (14.58 ml/min) in order to fulfil the 
imposed constraint. This optimal feed flow rate 
contributes to achieve the desired purity as it 
involves a smaller value of the internal flow rate Q3,
modifying the triangle of Storti in such a way that the 
new optimal point allows a higher overall 
concentration. Thus, the necessary duration of the 
zero-concentration step is smaller, so as the reduction 
of the wave height in zone III (Figure 6). This 
consequently increases the duration of the second 
feed concentration step, which leads to a higher 
process productivity (maximum value). Nevertheless, 
the overall increase of productivity as compared to 
OCP1 is only 1.5%; see Table 3.

 Table 3 Comparison of OCP2 results with the 
classical SMB process and standard ModiCon. For 

active constraint (85%).

Classical Standard  OCP2 
 Process ModiCon
103 PR[m3/(m3·s)]  2.691 3.211 3.363 

FEEDQ [ml/min] 14.19 20.57 14.58 
% Improvement -- a 19% a25,b5

a Compared to classical SMB process 
b Compared to standard ModiCon 
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Fig 6. Spatial evolution of the concentrations for 
OCP2.

Finally several new cases were consider in order to 
check the influence of parameter perturbations on the 
solution. The results show that the optimal PR is not 
particularly sensitive to parameter variations since 
changes up to 10% affect in no more than a 5% the 
values of PR  

5. CONCLUSIONS 

In this work we stated and solved two open-loop 
OCP related to the chromatographic SMB process. 
For their solution, we applied a control vector 
parameterization approach in combination with state 
of the art IVP and global and local NLP solvers. 

The use of robust optimization techniques allows for 
the computation of the optimal operating conditions, 
i.e. feed concentration, flow rate, switching time, etc, 
with maximum flexibility simultaneously 
considering practical constraints. 

The capabilities of this methodology were illustrated 
through the solution of the proposed problems. The 
results obtained show that significant improvements, 
as compared to existing procedures, can be obtained 
using the computed optimal policies. Note that these 
operating conditions cannot be calculated via any of 
the classical approaches. 
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