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Abstract: This paper presents the application of a special technique which combines 
neural networks and sliding modes for solving the robust tracking problem in a nuclear 
reactor when only the input and the output are available. Due to the appropriate sensor 
absence, the design is based on a differential neural network observer. The highly 
nonlinear structure provided by this neural network is linearized using sliding mode. 
Finally, this linear model is employed for determining a sliding mode control for tracking 
a reference model. The efficiency of this technique with a guaranteed bound for the 
averaged tracking error is illustrated by simulation.  Copyright © 2007 IFAC  
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1. INTRODUCTION 

 
In the National Institute of Nuclear Research of 
Mexico (ININ), there is located the most important 
nuclear research reactor of this country. This reactor 
is TRIGA Mark III-type and is mainly used for the 
study of the radiation effects in several substances 
(activation analysis, aging analysis, etc.). Likewise, it 
is used to isotope production for medical, industrial 
and agricultural applications. Basically, the reactor 
consists of a core immersed in a pool where the 
water has the double function of moderator and 
coolant. In the core, it is located the U235 fuel 
combined with zirconium hydride. Inside the core, 
there exist four rods built with boron. This last 
material is capable of absorbing neutrons. So, 
depending on the insertion or extraction of these 
rods, it is possible to reduce or increase the reactor 
power.  
 
In general, the control of any nuclear reactor can be 
classified in two categories: power regulation and 
trajectory tracking. For the ININ reactor, only the 
first option is available. Although, some schemes of 
tracking have been proposed for this reactor in 
(Pérez, 1994) and (Benítez-Read, 2005), they 
suppose a complete knowledge of all the parameters 

and the states of the system. However, in real 
situations, any design should consider that a nuclear 
reactor is an uncertain, inherently nonlinear and very 
complex system with time-varying parameters. 
Besides, most of the variables associated with a 
nuclear process are not measurable. Thereby, to solve 
the tracking problem effectively, it is necessary to 
resort to some robust techniques. In this paper, the 
attention will be focused on two of these techniques: 
neural networks (NN) and sliding modes (SM).   
 
NN are an approach which has generated great 
enthusiasm as a consequence of their capability of 
functioning adequately despite a partially (or 
inclusive totally) incomplete information about plant 
model. NN could be classified as static (feedforward) 
or as differential (recurrent) (Haykin, 1994). In the 
first kind of networks, a system dynamics is 
approximated by a static mapping; therefore, the 
network outputs are uniquely determined by the 
current inputs and the weights. In contrast, 
differential neural networks (DNN) incorporate 
feedback in their structure. So, they overcome many 
problems associated with first ones such as global 
extrema search. Furthermore, DNN have better 
properties of approximation. In recent years, it has 
been proposed to use neural networks in nuclear 
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reactors particularly for control (Garis, et al., 1998; 
Khajavi, et al., 2001; Boroushaki, et al., 2003) but 
generally the networks employed have been static or 
else, in many cases, they have lacked a rigorous 
proof of stability. 
 
On the other hand, during the last two decades, SM 
have emerged as other powerful tool for control, 
identification, and estimation in uncertain 
environments. Basically, SM consist of the 
application of a discontinuous control action for 
reaching and maintaining the dynamics of a system 
on a, so-called, sliding surface. The major 
advantages of SM are: low sensitivity to plant 
parameter variations and disturbance, fast transient 
behavior, and exponential convergence (Utkin, 
1992). However, despite these advantages, only a 
few applications of this technique have been reported 
in nuclear literature. So, a SM controller, to control 
reactor pressure, reactor water level, and turbine 
power of a nuclear power plant, is proposed in 
(Huang, 2004). In (Shtessel, 1998), it is discussed a 
feedback controller based on SM observer for a 
space nuclear reactor. 
 
In spite of fruitful research in DNN and SM, very 
few authors have considered the possibility of 
combining the advantages from these two techniques 
for obtaining a controller with better performance 
(Chairez, 2006) and none, to our knowledge, has 
considered apply this "sliding neuro controller" to 
the field of nuclear processes. Thereby, in this paper, 
it is suggested to solve the tracking problem for a 
nuclear research reactor using the following 
methodology: to overcome the uncertainty and the 
lack of appropriate sensors, a differential neural 
network observer with a sliding mode learning law 
and a switching correction term is used for 
estimating the reactor states. Since only the input and 
the output of the reactor are always available, a 
simplified, but imprecise, nonlinear third order 
mathematical model of the reactor is utilized for off-
line initial training of DNN. When this process of 
training has finished, the observer can work without 
any mathematical model. Next, the structure highly 
nonlinear provided by this special neural network is 
linearized using SM. Finally, this simple linear 
model is utilized to find a SM control for the tracking 
of a reference model. The workability of suggested 
approach is illustrated by a simulation example. 
 
 

2. MATHEMATICAL MODEL 
 
In general, the nuclear reactor dynamics is described 
by the following, so-called, point kinetics equations 
with six delayed neutron precursor groups (Hetrick, 
1993): 

            
6

,
1
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t t i i t
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n n Cρ β λ
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where nt is the neutron power (W), Ci,t is the power of 
the ith group delayed neutron precursor (W), ρt is the 
total reactivity, Λ is the effective prompt neutron 
lifetime (s), λi is the radioactive decay constant of ith 
group neutron precursor (s-1), βi is the fraction of ith 
group delayed neutrons, and β is the total delayed 
neutron fraction (β=∑6

i=1βi). It is important to 
mention that the six group point kinetics equations 
(1) and (2) are in reality a set of seven ordinary 
differential equations; accordingly, their 
manipulation can result difficult. However, it is 
possible to reduce the system order by combining the 
six precursor groups into an equivalent single group. 
First, let us define the effective precursor radioactive 
decay constant λ as 

                             ii
i

λβ
β

λ ∑
=

=
6
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1                            (3) 

Next, using (3), the equations (1) and (2) can be 
simplified into a second order system given by   
                        t

t t tn n Cρ β λ−= +
Λ

�                        (4) 

                           
t t tC n Cβ λ= −

Λ
�                      (5) 

where Ct is the equivalent power of all delayed 
neutron precursors. 
Now then, the total reactivity has two components, 
the external reactivity ρext,t and the internal reactivity 
ρint,t, that is,  
                             ttextt int,, ρρρ +=                       (6) 
The external reactivity is related to the position of the 
control rods. Thus, the external reactivity is 
considered as the control input of the system. The 
relationship between the external reactivity and the 
rod position can be represented through an empirical 
static function. On the other hand, the internal 
reactivity is associated with the effects of the 
temperature feedback. These effects can be described 
(Hetrick, 1993) by 
                int, 0 int,t t tKn Knρ α α γρ= − + −�             (7)  

where α is the negative temperature reactivity 
coefficient (°C-1), K is the reciprocal of the reactor 
heat capacity (°C/(W⋅s)), γ  is the reciprocal of mean 
time for heat transfer to the coolant (s-1), and n0 is the 
initial power when the external reactivity is equal to 
zero. For suitability, we consider in this work that 
n0=1W. The equations (4), (5), and (7) constitute a 
very simplified third order mathematical model of a 
nuclear reactor. The nominal parameters 
corresponding to a TRIGA MARK III research 
reactor located at National Institute of Nuclear 
Research of México (Viais, 1994) are as follows: 
α=0.01359875°C-1, β=6.433x10-3, λ=0.4024s-1, 
Λ=38μs, γ=0.2s-1, K=1/5.21045x104°C/(W⋅s) 
whereas the ranges for the variables of the same 
reactor operating on standard conditions are: nt  from 
1W to 1.1MW, Ct from 420.72W to 462.79MW, ρint,t 
from -1.4354 to 0, ρext,t from 0 to 1.4354. Defining 
the state coordinates and the control input as x1,t := nt, 
x2,t := Ct,  x3,t := ρint,t, ut := ρext,t, the equations (4), 
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(5), and (7) can be represented in the standard state 
variable form          

1, 1, 2 , 1, 3, 1,

2, 1, 2 ,

3, 1, 0 3,

1 1
t t t t t t t

t t t

t t t

x x x x x x u

x x x

x Kx Kn x

β λ

β λ

α α γ

= − + + +
Λ Λ Λ

= −
Λ

= − + −

�

�

�

   (8)  

 
 

3. DIFFENTIAL NEURAL NETWORK 
 
3.1 Uncertain dynamics and basic assumptions  
 
The uncertain nonlinear system which will be 
controlled, in general, can be represented by  

( ) 1, 2,, , ,  t t t t t t tx f x u t y Cxξ ξ= + = +�  (9) 
where n

tx ℜ∈ is the system state at time 
0 ,t ≥ p

ty ℜ∈ is the system output, m
tu ℜ∈   

is the control action ( )m n≤ , p nC ×ℜ∈  is an 
a-priory known output matrix ( )p n≤  and  

: n m nf +ℜ ×ℜ ×ℜ → ℜ . The vectors ξ1,t and ξ2,t 
characterize mixed uncertainties that may include 
both unmodelled dynamics and deterministic 
disturbances. Notice that an alternative 
representation for (9) always could be 
  

( ) ( ) ( ) ( )0 0 0 (0)
1t t t t tx A x W x B u B v fσ ⊥= + + + + ��   (10) 

 
where the parameters ( )0 n nA ×ℜ∈ ,  
( )0 n nW ×ℜ∈ ,  ( )0 n mB ×ℜ∈   are subjected to 

adjustment, ( ):B I B B+⊥ = − , 1v is a 

fixed function of time, the activation vector-function  
( )σ ⋅    :    ( ) ( )[ ]1 ,  ...,  nσ σ⋅ ⋅   has sigmoidal 

components  

( )

1

,
1
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j j j j j t
j

x a b c x

j n

σ σ σσ
−

=

⎡ ⎛ ⎞ ⎤⎟⎜⎢ ⎥⎟= + −⎜ ⎟⎜⎢ ⎥⎟⎟⎜⎝ ⎠⎣ ⎦
=

∑
…

 (11) 

( ) ( ) ( ) ( )

( )

0 0

0 (0)
1 1,

    : , ,

.

t t t t t

t t

f f x u t A x W x

B u B v

σ

ξ⊥

= − −

− − +

�
   

 
Hereafter it is supposed that the system (9), aside 
from being observable and controllable, complies 
with the following assumptions: 
 
1) System (9) satisfies the (uniform on  t) Lipschitz 

condition, that is, 
 

( ) ( ) 1 2

1 2

, , , ,

, ; , ; 0 ,n m

f x u t f z v t L x z L u v

x z u v L L

− ≤ − + −

ℜ ℜ ≤ <∞∈ ∈
 

2) The mixed uncertainties 1,tξ  and 2,tξ  are 
bounded, i.e., 2

, ,
j

j t j
ξ

ξ Λ ≤ ϒ  0,
jξΛ >  j=1,2 

(the matrices 
jξΛ  normalize the components to 

make possible to work with values of different 
physical nature). Besides, 1,tξ  and 2,tξ  do not 

violate the existence of the solution to ODE (9). 
3) Admissible controls satisfy admU  := 

( ){ }22
,0 1ˆ ˆ: := +

u u xuu u x u u u v v x
′

Λ Λ= Λ ≤

 where x̂ is a state estimation, 0 1, 0,v v
′
>    

,0 , 0m m n n
u u x

× ×< Λ ℜ < Λ ℜ∈ ∈  . Besides, 

tu  is such that does not violate the existence of 
the solution to ODE (9). 

4)  A0  is Hurwitz, the pair ( )( )0 ,A C  is 
observable, and  ( )( )0 ,A B  is controllable. 

5) ,tf�  the, so-called, “unmodelled dynamics”, is  
bounded, specifically,  

2 2
0 1 ,

ff
t tf f f x ΛΛ

≤ +
�

� � �   0,fΛ >    0fΛ >�  . 

It is worth mentioning that the preceding 
assumptions are generally met for physically 
meaningful dynamic systems and a nuclear reactor is 
not an exception. 
 
 
3.2 Observer structure  
 
DNN observer can be defined as follows: 
 

( ) ( ) ( )

[ ] ( )

0 0 (0)
1

1 2

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ,  
t t t t t

t t t t t t

d x A x W x B u B v
dt
K y Cx K SIGN y Cx y Cx

σ ⊥= + + + +

− + − =

                                                                               (12)                             
where ˆ n

tx ℜ∈  is the estimated state,  
n n

tW ×ℜ∈  is the weight matrix and  

 ( )

[ ]

1 if 0

: 1 if 0

-1,1  if 0

z

sign z z

z

⎧⎪ >⎪⎪⎪⎪= − <⎨⎪⎪⎪∈ =⎪⎪⎩

          (13) 

It is possible to see that the structure of the observer 
(12) consists of three parts: 
• the neural network identifier with a single output 

layer  
         ( ) ( ) ( )0 0 (0)

1ˆ ˆt t t tA x W x B u B vσ ⊥+ + +  
• the Luenberger tuning term K1yt − Ctx̂t   ; 
• the sign correction term K2signyt − Cx̂t    

which is intended to reduce the output external 
noise effect associated with real data. In general, 
this term improve the global performance of the 
observer particularly when the output error 
yt − Cx̂t   is small and consequently the 
Luenberger term is not effective anymore. 

 
 
3.3 Off-line training of the network.  
 
Before using DNN observer (12) on-line, it is 
necessary to select adequate values for A0 , B0 , 
and W0 . This preliminary process of selection is 
known as off-line training of DNN. If the off-line 
knowledge of all states of (9) is not available then at 
least it is necessary to resort to a simplified and 
inclusive imprecise model of (9) as the generator of    
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N training data utk ,xtk  ∣k1,N . Basically, the 
training process consists of two stages: First, using 
try-to-test method, values for A0 and B0  are 
proposed such that assumption 4 is satisfied. Next, 
using a least square method, the best nominal value 
of  W0  is determined. Define this value as (0)*W =  
  [ ] ( ) ( )[ ] 

1 1

2

1
arg min

k N N

N

t t t t t
k
f Y Y x xσ σ +

=
=∑ � " "  

( )0 (0) (0)
1where  :

k k k kt t t tY x A x B u B v⊥= − − −�    

(here   means pseudoinverse in Moore-Penrose 
sense). Starting from tN we are ready to initiate the 
learning (or DNN adaptation) process. 
 
 
3.4 Learning Law 
 
The weight matrix Wt is adjusted by the following 
learning law (Chairez, 2006): 
 

( ) ( ) ( )( )
( ) ( )

( )
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( ) ( ) ( ) ( )
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Pj, j=1,2 are the positive solution (if they exists) for 
the algebraic Riccati equation given by 

( )(0 ) (0 ) 0j j j j j jj jP A A P P R P Q∗ ∗+ + + =� �  (15) 

where ( )(0) (0)
11 : ,A A K C∗ = +�   (0) (0 )

2 : ,A A∗ =�                             
1 1

1
1 2

1
1 1 11: ,  :fR W K K Q

σ ξ ξ
− −

−
−
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1 1 0 0  2 ,  n n Dfl I f Q Qσ σ δ −
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( ) ( )0 1 0 1

2 1 210,  : ,  :D uR K C C K B B Q σ
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( ) ( )1
(0) 1 (0)

1 , 2 12 ,  : .u x fv f f W W W
σ σ−

∗ − ∗
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3.5 Main result on the estimation process  
 
One of the principles advantages of (12) and of the 
corresponding learning law (14) is that we can 
guarantee that the averaged estimation error is upper 
bounded.  
 
Theorem 1. If there exist positive definite matrices  

1 2 1 0, , , , , , ,D uf Qξ ξ σΛ Λ Λ Λ Λ Λ Λ�  and positive 

constants 1, ,k vδ  such that two matrix Riccati 
equations (15) have positive definite solutions, then 
the DNN observer (12) with any matrix K1  
guarantying that the close-loop matrix (0)A ∗�  is stable, 
that is,  

        
       ( )(0) (0)

1:  is HurwitzA A K C∗ ∗= +�          (16) 

and     
                      1

2 1 , 0K P Cλ λ−= >                    (17) 

supplied by the learning law (14), provides the 
following upper bound for the state estimation 
process:   

                   2

0

1lim /
T

t Q QPT
t

dt
T

ρ α
→∞

=

Δ ≤∫            (18) 

where 

        
( )

0 0 1 2 2

1/2 1/2
min 01 1

: 3 8

: 0

Q

Q

f v n

P Q P

ρ λ

α λ − −

= + + ϒ + ϒ + ϒ

= >

�
       (19) 

 
The proof of theorem 1 is achieved by means of 
Lyapunov-like analysis in (Chairez, 2006). 
 
 

4. SLIDIG MODE NEUROCONTROLLER 
 
Consider the reference model or desired dynamics 
given by  
                ( ) 0, ,   is fixedt tx t x xφ∗ ∗ ∗=�              (20) 
 
Basically, the tracking problem consists of selecting 
a proper control signal such that (9) follows (20) as 
closely as possible.   
 
 
4.1  Sliding mode DNN linearization  
 
DNN observer (12) represents one of possible 
models of the given uncertain system (9). However, 
the structure of (9) is highly nonlinear what may 
cause many problems for a control design. 
Fortunately, it can be demonstrated that this highly 
nonlinear model may be exactly approached (in finite 
time) by a simple linear model with a measurable 
input of a high frequency (generated by a relay type 
element). To do that, first, represent the DNN 
observer (9) as 
 

  ( )

( ) ( ) ( ) ( )

1

1 2

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ:= + - + -
t t t t t

t t t t t t t

d x Ax h x Bu B v
dt

h x W x K y y K sign y yσ

⊥= + + +    (21) 

 
And, next, introduce the following auxiliary model: 
 

         1 2
t t t t t

d x Ax Bu B v v
dt

⊥= + + +� �         (22) 

 
where tx�  is the state of this auxiliary model, the 
matrices  A  and  B  are the same as in (21) which are 
actually known, 1v and 2v  are auxiliary controls to 
be selected to provide the closeness of  tx�  to t̂x . 
Theorem 2. If  2

tv  in (22) is selected as  

( )

2
0

ˆ: ,   :
0 0

ˆ: 2 ,   0

t
t t
tt t t t

t

t t t c c

k if
v x x

if

k A h x

δ δ
δ δ

δ

δ ρ ρ

⎧⎪ ≠⎪⎪⎪= = −⎨⎪⎪ =⎪⎪⎩
= + + >

�   (23) 

then for any 0

c
t t δ

ρ
∗≥ =  we may guarantee the 

exact matching t̂ tx x= � . 
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Remark 1. To minimize the “chattering effect”, it is 
recommended to use the low-pass filter (LPF) which 
maintains tδ ε≤  for small enough   0 , that is, 

to use instead of  vt
2   the “averaged” control  vt

2av   
generated by the LPF 
          
             ( ) ( ) ( )2 2 2 2

0,  0av av av
t t tv v v vμ + = =�  

 
 
4.2 The orthogonal compensation control  
 
Now, the tracking process is analyzed. First, define 
the tracking error as :t t td x x ∗= −�   where  tx ∗  is 
the desired tracking process given by (20). In view of 
(22), the tracking error dynamics is governed by the 
following ODE: 
          1

t t t t td Ad Bu B v ζ⊥= + + +�          (24)     
where ( ) 2: ,t t t tAx t x vζ φ∗ ∗= − + . Any vector tζ  
always can be represented as its projection to another 
vector plus its orthogonal projection. Taking into 
account that 1

t tBu B v⊥⊥  for any tu  and 1
tv , it is 

possible to define 1, 2,:t t tB Bζ γ γ⊥= +  (rank 

B n m⊥ = − ) where ( )1, 2,,t t t tB Bγ ζ γ ζ++ ⊥= =        
Using this one, the dynamics given by (24) may be 
presented as 
   ( ) ( )1

1, 2,t t t t t td Ad B u B vγ γ⊥= + + + +�     (25) 

Let us take 1 1
1, 2,: ,  :t t t t t tu u v vγ γ= − = −� �  that 

transforms (25) into  
  [ ]1   t t t t t td Ad Bu B v Ad B B u⊥ ⊥= + + = +� �� �#    (26) 

where [ ]1:  ,n m
t ttu u v R += � �� # ∈  [ ]rank   B B n⊥ =# .  

Theorem 3. If  tu�  is selected as 

[ ]

[ ]

[ ] [ ] [ ][ ]( ) 1

:   ,  0

:   

  :=       

t t t

t
t

t

B B B B B B B B

u B B Ad u k

du k B B
d

+⊥ ′

+′ ⊥

−+⊥ ⊥ ⊥ ⊥

=− + >

=−

# # # #

�� �#

�� #  (27) 

then for any ( )0 / 2ft t d k≥ = �  it is possible to  

guarantee the exact tracking, that is, 0td = . If the 

pair A, B  is stabilizable and tu�  is selected as 
             [ ] [ ]1:   0t t ttu u v Kd= =� �� # #              (28)       

where the matrix K guarantees that A+BK  would be 
stable, then  ( )

0 0A BK t
td e d+= →   when  .t → ∞   

Remark 2: Here again instead of tu′�  it is 
recommended to use its filtered version obtained by 
passing this signal through the LPF. 
 
 
4.3 Main result on quality of a sliding mode 

neurocontrol  
 
Theorem 4. For the class of uncertain nonlinear 
systems (9) under the assumptions 1-5 the sliding 
mode neurocontrol (27), which uses the auxiliary 

signals t̂x  and tx�  generated by DNN observer (12) 
and the ODE (22) respectively, provides the 
following quality (on “average”) of the tracking 
process with the desired dynamics tx∗  given by (20): 

2

0 1 2
0

1lim 3
T

Q
t t QT Qt

x x dt
T

ρ
ε εα

∗
→∞

=

⎛ ⎞⎟⎜− ≤ + + ⎟⎜ ⎟⎟⎜⎝ ⎠∫   (29) 

where the constants ρQ and αQ are defined in (19) 
and ( )1,2i iε =  describes the quality of the low 
pass filtering (LPF) applied to the sliding-mode 
controls 2

tv  (23) and tu�  (27), that is, if instead of    
2
tv  and tu�  there are used 2( )av

tv  and ( )av
tu�   

satisfying  ( )2 2
1,av

t tv v ε− ≤  ( )
2

av
t tu u ε− ≤� � .  

 
 

5. NUMERICAL EXAMPLE 
 
In this section, the robust tracking process for a 
nuclear reactor via the sliding mode controller (27) is 
illustrated. Since it is considered that only the input 
and the power x1,t are available for measurement, the  
output of system (8) can be defined as yt := x1,t. Or 
else, in terms of the state vector, tty Cx=  where C 
:= [1 0 0] and 3ℜ∈tx . Besides, to overcome the 
absence of adequate sensors that prevent the off-line 
knowledge of all states, the model (8) with nominal 
parameters given in the section 2 and with nominal 
initial condition Tnnx ]0,,[ 000 Λ= λ

β   where  0n  = 
W1  is used as data generator. The preliminary 

training produces the following results: 
 

 
(0) (0)

1.7 1.2 1 1

1 0 0 , 0 ,

0 0.1 0 0

A B

⎡ ⎤ ⎡ ⎤− − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

(0)
0.0237 0.0258 0.2176

1.078 1.502 0.1815

0.0613 0.2024 0.0154

W ∗
− −

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Now, the observer can work without any 
mathematical model. In general, to show the 
robustness properties of the technique studied, the 
sliding mode neurocontroller (27) is proved when the 
plant model (8) is simulated on the following new 
conditions: First, the initial condition is changed such 
that now Tnnx ]101,10,[ 6

000
−

Λ
′ ×= λ

β  where n0=1W. 
Second, the parameter values of (8) are changed to 

1°C0097.0 −=α , 0072.0=β , 13942.0 −= sλ , and 
sμ30=Λ  (both γ  and K  stay equal). Of course, 

these changes are supposed to be unknown for the 
controller. Besides, the control structure provided in 
(Benítez-Read, 2005) is selected as the reference 
model. By “try-to-test” method, the parameters of 
DNN observer (12) are selected as follows: 1K  = 

[ ]1.3,  17, 0.2 T− − ,    2K  = [ ]0.87, -0.24, 0.71 ,T   
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2.3k = ,  P1 =
5 2 3

7 2 10 1
3 1 4
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⎢ ⎥
⎢ ⎥
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 and  P2 = 
10 1 4
1 11 2
4 2 3

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

  

                                                                                                              
It is important to mention that due to wide range of 
state values associated with (8) it is necessary to 
resort to the normalization of variables in both the 
preliminary training and on-line estimation process. 
Such normalization does not affect the results. 
Instead, it permits to the controller to work 
satisfactorily. To quantify the global performance of 
the sliding mode controller, it is defined the 
following performance index for the tracking 
process:  
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ε
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The simulation results are exhibited in Fig. 1 and 
Fig. 2 for the tracking of a reference power and the 
performance index, respectively. The reference 
power changes from 1W up to 1 MW. 
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Fig. 1. Control process of the power 1,tx  for the 
TRIGA MARK III-Type nuclear reactor. 
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Fig. 2. The performance index for the tracking 

process.  

6. CONCLUSIONS 
 

In this paper, it has been shown the effective use of a 
sliding mode neurocontroller for the robust tracking 
in a nuclear research reactor. The controller was 
applied to the third order nonlinear model of a 
TRIGA MARK III-Type reactor. The simulation 
results show a satisfactory performance of the 
system. So, it is possible conclude that this special 
technique represents a very promising methodology 
in nuclear process control.  
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