
8th    International  IFAC    Symposium  on
Dynamics and Control of Process Systems

    

 

 

 

 

 

 

 

 

DEGREES OF FREEDOM ANALYSIS OF  
ECONOMIC DYNAMIC OPTIMAL PLANTWIDE OPERATION

 

 

A.E.M. Huesman 
O.H. Bosgra 

P.M.J. Van den Hof 
 

 

Delft Center for Systems and Control 
Delft University of Technology 

Mekelweg 2 (OCP building) 
2628 CD, Delft, The Netherlands 

 

 

 

Improving the operation is an attractive option for the process industry to deal with 
increased competition. In this paper a general dynamic optimization framework is 
proposed that aims to improve plantwide operation in an economic sense. The term 
general means that it is based on dynamic operation in which any operational constraints 
can be accommodated. One would expect economic optimization to utilize all available 
degrees of freedom. However it is shown that this is normally not the case, so this leaves 
the possibility open to do further optimization.     Copyright © 2007 IFAC
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1. INTRODUCTION 
 

Due to globalisation the process industry is faced 
with increased competition. This has resulted in 
pressure on the margins and the process industry has 
to find ways to secure and/or improve its economic 
performance. This can be done by changing the 
design, the operation or a combination of both. 
Certainly for existing plants improving the operation 
is an attractive “low-cost” option. 

Operational improvement requires the availability of 
all possible process Degrees Of Freedom (DOF). 
These can be calculated by: 

NENVDOF ### −=   (1) 

In (1) #NV stands for the number of variables and 
#NE for the number of equations. Equation (1) easily 
leads to errors; a small number is determined by the 
subtraction of two large numbers. Therefore easier 
methods have been developed by Pham (1994), 
Ponton (1994) and Luyben (1996). The last method 
boils down to the fact that the number of DOF equals 
the number of flows that can be manipulated. This 
method will be used in this paper. The various 
methods are compared by Murthy Konda, Rangaiah 
and Krishnaswamy (2006). 
  

While improving operation one needs to have a clear 
overview of all operational objectives. A good 
starting point is provided by plantwide control. 
Plantwide control was initiated by Buckley (1964), 
who stated that the main objective of a plant is to 
produce the required quantity and quality. 
Furthermore Buckley introduced the concept of 
material balance control and discussed its interaction 
with quality control. The interest in the subject 
increased during the 90’s and this resulted in a text 
book by Luyben, Tyreus and Luyben (1998). In their 
book they discuss the influence of recycles and 
present a plantwide control design procedure. A 
review on the subject of plantwide control is 
provided by Larsson and Skogestad (2000). There is 
mutual agreement that the plantwide control 
objectives can be summarized as: 
1) Stay within operational constraints. 
2) Realize the required quantity and quality. 
3) Optimize economic performance. 
It should be mentioned that plantwide control only 
considers continuous operation. Also the attention for 
the third plantwide objective (optimize economic 
performance) has been very limited. So the focus of 
plantwide control has been on feasibility. Plantwide 
control deals with DOF in a straightforward way; for 
each DOF there is normally one control objective. In 
this way all DOF are fixed. 
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According to White (1999) economic process 
optimization dates back almost 50 years. The current 
state of the art is Real Time Optimization (RTO). 
Since RTO is in fact steady state optimization it is 
not compatible with batch operation. It has been 
recognized that RTO is slow since each optimization 
has to be proceeded by a steady state. The last two 
decades there has been a substantial amount of work 
on dynamic optimization, see Biegler (2004). 
However the main focus has been on how to perform 
dynamic optimization. The same goes for batch 
optimization; see Méndez, et al. (2006). It should be 
noted that “the state of the art” for batch operation 
are recipes that are not optimal since their 
development is normally done under time pressure. 

To summarize the discussion above: 
• The process industry needs to improve its 

economic performance. 
• Plantwide control only considers continuous 

operation and pays little attention to economic 
performance. 

• RTO can only be used to improve the economic 
performance of continuous operation. Another 
limitation is that RTO is slow.  

• The economic performance of continuous as well 
as batch operation can be improved dynamically. 
This improvement can be explored and exploited 
by dynamic optimization. 

• Most of the work done on dynamic optimization 
focuses on how to perform dynamic 
optimization rather than the possible economic 
benefits. 

To bridge the gap between economic performance 
and dynamic optimization this paper focuses on the 
following question: 
How to frame dynamic optimization such that we can 

expect improved operation in an economic sense? 
In this paper such a general framework will be 
proposed. The term general means that it is based on 
dynamic operation in which any operational 
constraints can be accommodated. The framework 
deals with the DOF in an optimization rather than a 
control context. Therefore special attention will be 
paid to the question: 

Does dynamic optimization with an 
economic objective utilize all DOF?  

If not all DOF are utilized then there is the possibility 
to do further optimization. This paper will only 
consider optimization in an off-line setting. 

In the rest of this paper first the framework is 
presented. Then the framework is investigated in two 
numerical experiments. The last section summarizes 
the conclusions and suggests directions for future 
work. 

2. DYNAMIC OPTIMIZATION FRAMEWORK 

The framework adopts a plantwide system boundary. 
In this way we avoid the need to know intermediate 
prices; the flows associated with intermediate prices 
simply fall within the system boundary. 

Plant

Tank(s)

Unit(s)

Feed

Utility

Etc.

System boundary

Figure 1. A visualization of the proposed framework. 

The framework incorporates product tank(s), see 
figure 1. This allows for dynamic improvement in the 
sense that at least the product flow to the tank does 
not have to be constant. If the product quality to the 
tank is allowed to vary depends on the ease of 
mixing. For low viscosity products “on spec” mixing 
in the tank is certainly an option, but high viscosity 
products should be produced directly “on spec”. Note 
that the inclusion of products tank(s) also implies that 
the framework supports continuous as well batch 
operation. In the case of batch the unit(s) and the 
tank(s) are just completely integrated. 

The plantwide control objectives can be reformulated 
as a dynamic optimization problem: 
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In problem (3) x stands for state variables, y for 
algebraic variables and u for inputs. Normally all 
these variables are functions of time. The variable tf

denotes the finite horizon. The horizon as well as the 
required quantity and quality are supplied by 
scheduling. This facilitates integration with 
scheduling but it also means that the product is 
handled as a constraint rather then as a part of the 
economic objective (in the form of revenues). So the 
economic objective is a cost function; it typically 
takes into account the cost of the flows that cross the 
system boundary (feed, utilities, etc.). 

As explained in the introduction the number of 
operational DOF equals the number of flows that can 
be manipulated. So within the proposed framework 
the number of DOF equals the number of flows that 
cross the system boundary plus the number of flows 
that can be manipulated within the system boundary.
In other words the objective contains fewer variables 
than DOF; the objective is sparse. 
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Often the objective is linear, the same goes for the 
required quantity and quality and the operational 
constraints. However the plant behaviour is normally 
non-linear and for that reason problem (2) and (3) are 
non-linear optimization problems.  

3. EXPERIMENT 1, STIRRED TANK REACTOR 
AND TANK 

This system consists of a Stirred Tank Reactor (STR) 
and a tank (see figure 2). In the STR the reaction A 
to B takes place. The product B is stored in the tank. 
The following assumptions are made: 
1) The reaction is first order in A. 
2) The density is constant. 
3) The STR and tank are both well-mixed. 

F1, A1 F2

STR Tank

VT, AT
VR AR

Figure 2. A STR and a tank. 

From a total mass balance over the STR and the tank 
we can derive: 

2

21

F
dt

dVT

FF
dt

dVR

=

−=
    (4) 

Repeating the exercise for a molar balance for 
component A gives: 

( )

( )ATAR
VT

F

dt

dAT

kARARA
VR

F

dt

dAR

−=

−−=

2

1
1
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So the total system is described by four differential 
nonlinear equations. Furthermore we have four state 
variables (VR, VT, AR and AT) and two DOF (F1 and 
F2). The objective is to minimise the integrated 
value of (vF1 + VR) over 1 hour while producing a 
certain amount of product (VTfinal = 2.1) of a certain 
quality (ATfinal = 0.05). The objective reflects the 
total operating costs; feed plus stirring (the stirring 
power is assumed to be proportional to the reactor 
volume). The parameter v represents the ratio costfeed

over coststirring. For values of parameters, initial 
conditions etc. see table 1 in the appendix. 

The dynamic optimization was solved using the 
simultaneous approach, see Biegler (1984). The 
differential equations (4) and (5) were discretized by 
an implicit Euler scheme in which the time step Dt
was fixed at 0.01 hours. For example using N grid 
points to discretize the total mass balance over the 
STR gives: 
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 (6) 

The implementation was done in an algebraic 
language (GAMS), the solver used was CONOPT. 
The result is shown in figure 3. The calculation time 
for this problem was around 1 second (Windows XP 
professional, 3.2 GHz and 1 Gb RAM). 
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Figure 3. The optimal trajectories for the STR and 
tank example. The horizon is 1 hour. 

The solution is almost periodic. The STR is filled and 
emptied twice; so two batches are performed. From a 
reactor engineering point of view this result was to 
be expected by choosing batch operation the average 
reactant concentration is high which results in a low 
reactor volume. Note that the framework is actually 
capable of “selecting” batch operation.  

Now let’s increase the horizon to 2 hours while 
keeping the rest the same. Figure 4 shows the result. 
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Figure 4. The optimal trajectories for the STR and 
tank example. The horizon is 2 hours, the initial 
guess for all decision variables is set to 0.5. 

Although the STR is still operated in a batch way, the 
solution is no longer periodic. As a matter a fact 
changing the initial guess for the decision variables 
changes the trajectories without affecting the 
objective value (see figure 5). 

So the optimal trajectories are to a certain extent 
arbitrary. This result can be explained by the 
existence of “multiple solutions”, see figure 6. This 
figure implies that there is an optimal constrained 
subspace perpendicular to the objective gradient: 

0cos..**)1*2( =∇Δ=∇⋅− θFxFxx  (7) 
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Figure 5. The optimal trajectories for the STR and 
tank example. The horizon is 2 hours, the initial 
guess for all decision variables is set to 1.0. 

grad(F)
x1*

x2*

Figure 6. The existence of multiple solutions, x1* 
and x2* are optimal solutions in the decision space. 

Using the data that correspond to figure 4 and 5 gives 
an inproduct of -0.0113 and an angle of 90.003°. 
Especially the angle confirms the explanation. 
Multiple solutions result from the fact that we have a 
sparse linear objective and linear inequality 
constraints. This can be illustrated by a simple 
problem: 
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This optimization problem has 3 decision variables, 1 
non-linear equality, 2 DOF, a sparse linear objective 
and 3 linear inequalities. Figure 7 shows the set of 
multiple solutions; the black curve in the shaded 
plane. 

x1

x2

x3

Figure 7. The solution of optimization problem (8).

Basically this means that a realistic economic 
objective does not utilize all DOF. 

4. EXPERIMENT 2, DISTILLATION COLUMN 
AND TANK 

The STR is now replaced by a binary Distillation 
Column (DC) with eight trays (see figure 8). 

F, zf

Column Tank

MT, xT

D, xD

B, xB

L

V

Figure 8. A DC and a tank. 

The heavy component (product) is stored in a tank; 
the light component leaves the system. The 
modelling closely follows Skogestad, 1997. The 
following assumptions are made: 
1) The vapour phase can be neglected. 
2) Trays are well-mixed. We assume the top and the 

bottom inventory to be well-mixed as well. 
3) Outgoing flows on a tray are in equilibrium. 
4) The liquid molar hold-up on each tray is 

constant. The same goes for the top and the 
bottom inventory. 

5) The liquid and vapour molar flows are constant 
(constant molar overflow). 

6) The tank is well-mixed. 

Trays, top and bottom inventory are all considered 
compartments. So in total there are 10 compartments. 
The compartments are numbered from the bottom to 
the top. The numbering of the mole fractions is 
explained in figure 9.  

Compartment n

yn-1

yn xn+1

xn

Figure 9. Numbering of the mole fractions. 

The equilibrium on a tray is given by: 

( )xn

xn
yn

11 −+
=

α

α    (9) 

By the way the numbering implies that xB = x1 and
xD = x10. From a molar balance (total and light 
component) over all compartments we obtain: 
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A molar balance (total and light component) over the 
tank gives: 
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So the system has 12 state variables (x1 to x10, xT
and MT) and three DOF (F, V and L). The objective 
is to minimize the integrated value of (wF + V) over 
2 hours while producing a certain amount of product 
(VTfinal = 1.1) of a certain quality (ATfinal = 0.2). 
Again the objective reflects the total operating costs; 
feed plus utility, the parameter w represents the ratio 
costfeed over coststeam. For values of parameters, initial 
conditions etc. see table 2 in the appendix.  

This dynamic optimization was solved in exactly the 
same way as the STR and tank example. The result is 
shown in figure 10. 
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Figure 10. The optimal trajectories for the DC and 
tank example. 

The calculation time for this problem was around 1 
minute (Windows XP professional, 3.2 GHz and 1 
Gb RAM). 

Figure 10 shows that the bottom is left at a high mole 
fraction; 0.34 (near the end of the horizon the bottom 
is “flushed out”). Figure 11 shows what happens if 
we repeat the dynamic optimization with the extra 
constraint; xB = 0.2 at t = 2.0 
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Figure 11. The optimal trajectories for the DC and 
tank example with the constraint xB = 0.2 at t = 2.0. 

Figure 11 shows that F drops and rises rapidly 
several times. Closer inspection reveals that this also 
happens to V and L. As a matter a fact during these 
transients the ratio V over F and L over F remains 
constant. This conclusion is also supported by figure 
10. So in this example neither continuous or batch 
operation but constant ratios are “selected”. 

Also in this case changing the initial guess for the 
decision variables changes the trajectories without 
affecting the objective value. So again this means 
that the economic objective did not utilize all DOF. 

6. CONCLUSIONS AND FUTURE WORK 

A general dynamic optimization framework is 
proposed. The term general refers to the fact that it 
can accommodate any operational constraints. The 
framework is characterized by: 
• An economic cost objective. 
• A plantwide system boundary that includes 

product tanks. 
• A finite time horizon and constraints with respect 

to product quantity and quality. 

The framework produces valuable results; for the 
STR and tank experiment it “selected” batch 
operation while for the DC and tank example it 
revealed that certain ratios should be kept constant.  

It is shown that normally the framework does not 
utilize all DOF (due to combination of a sparse linear 
objective and linear inequality constraints), so this 
leaves the possibility open to do further optimization. 

Future work will focus on “further optimization”. 
One possibility is to extend the economic objective 
with the variable tf. This variable can be associated 
with economic depreciation. Another possibility is to 
use hierarchical optimization. In the first 
optimization step the best economic performance is 
determined by the proposed framework. In the 
second optimization step a unique solution is selected 
from the set of multiple solutions. This implies that 
the second optimization does not affect the economic 
performance. The objective used in the second step 
expresses an operational preference for example; 
minimize deviation from a known reference solution.
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APPENDIX 

Table 1 Values of parameters, initial conditions and 
decision variables for experiment 1.

 

Parameters  Initial conditions 
A1 1  VR 0.1 
k  14.9787  AR 0.05 
v  2  VT 0.1 
    AT  0.05 

Decision variables 
  Low limit   Initial guess  High limit 
F1 0  0.5  5 
F2 0  0.5  5 
VR 0.01  0.5  1 
AR 0  0.5  1 
VT 0.01  0.5  5 
AT 0  0.5  1 

Table 2 Values of parameters, initial conditions and 
decision variables for experiment 2.

 

Parameters  Initial conditions 
α  1.68  x1 0.1805 
zf  0.5  x2 0.2522 
M1 0.375  x3 0.3254 
M2...9 0.002  x4  0.3942 
M10 0.375  x5 0.4539 
w  2  x6 0.5038 
    x7 0.5673
    x8 0.6439
    x9 0.7299 
    x10 0.8195 
    MT 0.1 
    xT 0.2

Decision variables 
  Low limit   Initial guess  High limit 
F  0.5  1  1.5 
V  0.1  2  2.0 
L  0.1  1.5  2.0 
D  0.1  0.5  2.0 
B  0.1  0.5  2.0 
x1 0.01  0.1805 1 
x2 0.01  0.2522 1 
x3 0.01  0.3254 1 
x4 0.01  0.3942 1 
x5 0.01  0.4539 1 
x6 0.01  0.5038 1 
x7 0.01  0.5673 1 
x8 0.01  0.6439 1 
x9 0.01  0.7299 1 
x10 0.01  0.8195 1 
y1 0.01    1 
y2 0.01    1 
y3 0.01    1 
y4 0.01    1 
y5 0.01    1 
y6 0.01    1 
y7 0.01    1 
y8 0.01    1 
y9 0.01    1 
y10 0.01    1 
MT 0.01  0.5  3 
xT 0  0.5  1 
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