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Abstract: During petroleum well drilling operations, the pressure gradient in the
well has to be maintained within the pressure restrictions of the formation. The
well pressure can be controlled by restricting the drilling fluid flow through a choke
valve at the top of the well. This paper proposes a closed-loop control algorithm
using a finite horizon nonlinear model predictive control scheme based on a low
order well model for this problem. The algorithm is tested on a rigorous high order
model. Copyright c©2007 IFAC
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1. INTRODUCTION

During petroleum well drilling, a drilling fluid is
used to transport the cuttings from the drilling
process and also to obtain the required down-
hole pressure due to pressure constraints of the
formation. The downhole pressure is controlled
by adjusting a choke valve restricting the flow
through the well. In a recent study [Nygaard and
Nævdal, 2006] a nonlinear model predictive con-
trol (NMPC) scheme for controlling the downhole
pressure were presented. The NMPC scheme used
a detailed, rigorous fluid flow model when per-
forming the predictions. In addition, the scheme
also revealed some stability challenges. The cur-
rent work represents an extension to the results
in Nygaard and Nævdal [2006].
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A nonlinear low order model developed for linear
controller tuning, is further developed to better
describe the liquid fluid flow behavior. This allows
the low-order model to be used for prediction in
the NMPC scheme instead of the more detailed,
rigorous model. This has expected benefits in
terms of improved real time capabilities, state
observability and robustness.

The present NMPC scheme also uses elements
from established NMPC system theory [Mayne
et al., 2000, Findeisen et al., 2003, e.g.] for perfor-
mance and robustness (including stability), and to
be able to use shorter control horizons to reduce
computational complexity. Note, however, that no
proof of closed loop stability is given, however
closed-loop simulations are indicating good sta-
bility properties.

The following section gives an description of the
drilling process. In Section 3, the revised low order
model is presented, and in Section 4 the observer
is described. In Section 5 the improved NMPC
scheme is shown. Results from simulations are
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given in Section 6, and concluding remarks are
found in Section 7.

2. PROCESS DESCRIPTION

When drilling into a formation, the pressure in
the well is critical for the success of the drilling
process. The pressure in the well pwell must be
within the operating pressure range of the for-
mation. The upper bound of the pressure range
is the formation fracturing pressure pfrac, the
lower bound is the formation collapse pressure
pcoll. In managed pressure drilling applications
the focus is on controlling the well pressure just
above the reservoir pore pressure pres during the
whole drilling operation, i.e.

pcoll(t, x) < pres(t, x) < pwell(t, x) < pfrac(t, x)

where x is the position along the well trajectory
and t is the time. The reservoir pore pressure pres

is a function of both time and position along the
well trajectory. During drilling, a drilling fluid is
circulated through the drillstring and drill bit.
The drill bit is equipped with a check valve,
which prevents the drilling fluid in the annulus
to return into the drillstring. The drilling fluid
flows through the annulus between the drillstring
and the walls of the well. Figure 1 shows a layout
of a system setup for drilling into a petroleum
reservoir.

The well pressure can be manipulated by the
operator by adjusting the drilling fluid flow and
density. In addition, the operator can adjust a
choke valve, restricting the fluid flow. A further
introduction to drilling operations and pressure
control can be found in Nygaard [2006]. Drilling

Fig. 1. Drilling of a well into a reservoir.

operations consists of several different procedures,
and the focus in this paper has been on controlling
the pressure during a pipe connection procedure,
where the fluid flow rate is stopped for about 10-
15 minutes.

3. LOW-ORDER WELL MODEL

In Nygaard and Nævdal [2006] a low-order well
model for two-phase flow was developed to be used
for tuning purposes of a pressure control system
using a choke valve as control input. The low-
order model was inspired by a low-order two-phase
model used for fluid flow stabilization described
in Storkaas et al. [2003]. In this paper the model
has been revised to describe liquid fluid flow
behavior only.

Figure 2 shows how the fluid flow of the well
system is divided into three compartments, the
drill string and the annulus between the wall of
the well and the drill string in addition to the
wellhead on the top of the well.

When setting up the low-order model, an explicit
calculation scheme is defined by

ẋ = f(x, u, v) (1)

y = h(x, u) (2)

where x is the state, u contains the manipulated
variables, v is the disturbances and y is the
measured variables. The state vector is

x = (vd, va, vc)
T

(3)

where v denotes fluid velocity and L denotes
length. Furthermore, subscript d denotes drill-
string, a denotes annulus and c denotes choke line.
The measured variables

y = (pp, pa,bha, pcp)
T

(4)

where p denoted pressure. Furthermore, subscript
p denotes pump, bha denotes bottomhole assem-
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Fig. 2. The fluid flow is divided into three com-
partments, the drill string, the annulus and
the wellhead.
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bly and cp denotes choke pump. The manipulated
variable is the area of the choke line, given by

u = Ac (5)

where A denotes area. Pump flow rates and out-
flux from the well into reservoir is treated as
disturbances to the system, giving the disturbance
vector

v = (qp, qr, qcp)
T (6)

where q denotes volume flow rate, and subscript
r denotes reservoir.

When modeling the fluid flow in a pipe segment
as a first order system, the system can be modeled
as

ẋ = −
1

T
x +

Ku

T
u +

Kv

T
v (7)

where x is the exit velocity of the pipe, u is
the controlled input volume rate of the pipe and
v is the disturbance such as volume changes or
additional fluid inflow, T is the first order system
time constant, and Ku is the gain of the control
input u and Kv is the gain of the disturbance v.

Using the first order pipe model as a basis for
the model design of the well, the model can be
presented as:

ẋ1 = −
1

Td

x1 +
1

TdAd

v1 (8a)

ẋ2 =
Ad

TaAa

x1 −
1

Ta

x2 +
1

TaAa

v2 (8b)

ẋ3 =
Aa

Tcu
x2 −

1

Tc

x3 +
1

Tcu
v3 (8c)

where subscript od denotes outer drillstring area.

The pressures in the well are influenced by the
frictional pressure losses in the drillstring, the
annulus and the choke line. The friction pressure
in the drillstring pfd, the annulus pfa and the
choke line pfc can be expressed using

pfd =
ρfdLd|x1|x1

2Dd

pfa =
ρfaLa|x2|x2

2Da

pfc =
ρfcLc|x3|x3

4
√

u/π

where ρ is the density, f⋆ is the constant friction
factor.

The measurement vector for the pump pressure
y1, the pressure at the bottomhole assembly y2,
and the pressure prior to the choke y3, are given
by

y1 = pfd + pfa + pfc + p0 (9a)

y2 = kpfc + ρghd + pfa + pfc + p0 (9b)

y3 = pfc + p0 (9c)

where h⋆ is the vertical depth and k is a compress-
ibility factor for the drilling fluid. The correction
term kpfc is added to the bottom hole pressure

measurement, as the compression of the fluid in
the annulus is proportional to the pressure across
the choke line.

This model layout is able to capture the most
important dynamics that are present during a
pipe connection operation. However, an observer
system must be designed to allow the model to be
used in a model predictive control scheme.

4. OBSERVER BASED ON THE
UNSCENTED KALMAN FILTER

The unscented Kalman filter (UKF) is a derivative-
free Kalman filter for nonlinear estimation [Julier
and Uhlmann, 2004]. The UKF does not use a
linearization of the model to calculate the estima-
tion error covariance matrix, but instead it tries
to approximate this matrix by introducing sample
points.

The nonlinear model is applied to a set of state
vectors points, called sigma points. These sigma
points are used to calculate the probability dis-
tribution of the estimation error. Our implemen-
tation of the unscented Kalman filter follows the
presentation in Wan and van der Merve [2001],
where the unscented Kalman filter is used for
parameter estimation. A detailed description of
UKF for flow parameter estimation in drilling
applications can be found in Gravdal et al. [2005].

Initially, the augmented state vector is assumed
to be χa

0 = [xa
0 , θa

0 ] , with an initial estimation
error covariance matrix Pa

0 . The parameter vector
is defined by

θ = (fd, fa, fc, k)
T

(10)

The remaining unknown parameters, Td,Ta,Tc, are
found by manual comparison with the detailed
dynamic well model, and is constant during the
whole simulation. The low order model is com-
pared with the detailed dynamic model, and a
fairly good match is found. The model parame-
ters, θ, are tuned using the observer system to
obtain a good match with the detailed model.

5. CONTROL ALGORITHM

5.1 Nonlinear Model Predictive Control

By now, there seem to be a general consensus that
ingredients in a finite horizon NMPC scheme with
closed loop stability are a terminal cost bounding
the infinite horizon cost (“cost-to-go”) and, in
many cases, a terminal state constraint [Mayne
et al., 2000, Findeisen et al., 2003, e.g.]. The
terminal cost and the terminal state constraint are
typically found using Lyapunov methods (based
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on linearization and/or nonlinear system theory)
in a given desired equilibrium (corresponding to
the setpoint(s)).

In the present case, we use these guidelines, but we
loosen on some of the requirements: For each given
desired equilibrium (given by desired setpoint and
measured (and unmeasured) disturbances), we use
linearization and LQR methods to calculate a ter-
minal cost that approximate the cost-to-go from
the end of the control horizon. To make the op-
timization problem easier to solve, and to avoid
hard and costly computations for each equilib-
rium, we choose not to use a terminal constraint,
but choose instead a longer horizon. Therefore, we
are not guaranteed stability, but we have the most
important stabilizing ingredients. If we at the end
of the horizon are close to the desired equilibrium,
the LQR cost based of the linearized system will
be a good approximation to the infinite horizon
NMPC cost, and this setup will therefore also
provide good closed-loop performance.

The NMPC scheme we consider will therefore look
like this: Solve, at each sampling instant ti, the
following optimization problem:

min
ū(·)

J(ū(·); x(ti)) (11a)

s.t.: ˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(0) = x(ti) (11b)

ū(τ) ∈ U, x̄(τ) ∈ X τ ∈ [0, Tp] (11c)

The cost functional J is defined over the control
horizon Tp by

J(ū(·); x(ti)) :=

∫ Tp

0

F (x̄(τ), ū(τ))dτ + E(x̄(Tp)).

The bar denotes internal controller variables, x̄(·)
is the solution of the dynamic model (11b) driven
by the input ū(·) : [0, Tp] → U with the initial
condition x(ti). The state and control constraints
X and U are specified in (11c).

The solution to the optimal control problem is
written ū⋆(·; x(ti)). This input is open-loop ap-
plied to the system until the next sampling instant
ti,

u(t; x(ti)) = ū⋆(t−ti; x(ti)), t ∈ [ti, ti+δ) . (12)

The control u(t; x(ti)) is a feedback, since it is
recalculated at each sampling instant using new
state measurements.

5.2 Model changes for optimization

We make some changes to the model (8) developed
in Section 3 to make it more suitable as optimiza-
tion model.

First, we note that the input enters as 1/u (only)
in the model. Therefore, to increase linearity and
optimization convexity in the NMPC problem, we

use ũ = 1/u as the optimized input. Note that this
does not completely linearize the dynamics, and
also the measurements and (as we will see) some
constraints are still nonlinear.

Moreover, we write the optimization model on
velocity form, that is, we use the derivative of ũ as
optimization input. This has several advantages:

• We avoid a ’direct feedthrough’ from input
to pressure measurement.

• It allows direct implementation of rate con-
straints on u. However, since d

dt
ũ = −1/u2 d

dt
u,

these constraints must be implemented as
nonlinear state constraints, which might be
a drawback.

• It allows using longer sample intervals be-
tween NMPC optimizations, since the input
to the process becomes “first-order hold”
rather that “zero-order hold”.

Disadvantages are that the state dimension is
increased (u is a new state, the fourth), and that
input constraints become state constraints.

The velocity-form formulation adds an integrator
in the control loop, but as we do not control pres-
sure directly (only indirectly through the com-
putation of the desired steady state), we do not
obtain integral control this way. Integral control
is obtained through parameter estimation in the
state estimation.

6. CLOSED LOOP SIMULATIONS

The simulated test case is based on a partly hori-
zontal well that is 2000 m deep and 3600 m long.
No drilling is performed during the operations,
but the pressure is kept just above the forma-
tion pressure, using a downhole pressure reference
value of 268 bar. Simulation constants are given
in Table 1. The initial observer parameters used
in the simulations are θ = [0.038, 0.11, 0.08, 1.1]T ,
and the initial estimation error are Pa

0 = 0 with
a model error standard deviation of [1 · 10−5, 1 ·
10−4, 1 · 10−4, 2 · 10−1]T .

The NMPC is implemented using a quadratic
stage cost F (x, u) = xT Qx + uT Ru, with Q =
diag{0, 0, 10, 0.1} and R = 10. We used 5 degrees
of freedom over a control horizon of 200 s. Input
blocking was used, with more frequent control
updates on the first part of the horizon. NMPC
sample time was 5 s. The NMPC optimization
problem was solved using a sequential method
by applying a general-purpose SQP solver, and
fixed-step discretizing the dynamic optimization
model using a step size of 0.5 s. The time used for
optimization are in the same order of magnitude
as the NMPC sample time, but there is room
for considerable improvements using more tai-
lored optimization algorithms, optimizing choice
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Table 1. Well and reservoir data

Parameter Value

Well vertical depth, ha 2000 m
Drillstring length, Ld 3600 m

Drillstring inner diameter,Dd 0.0925 m
Drillstring area,Ad 0.0067 m2

Annulus length, La 3600 m
Annulus hydraulic diameter,Da 0.211m

Annulus area,Aa 0.0278 m2

Chokeline length, Lc 3m
Standard main pump flow rate, qp 1000 l/min
Standard choke pump flow rate, qcp 200 l/min

Drilling fluid density, ρ 1250 kg/m3

Downhole reference pressure, pref 268 bar
Time constant, drillstring, Td 3.5 s
Time constant, annulus, Ta 10 s

Time constant, choke line, Tc 3 s

of integration method and step size, and compiled
implementations.

The scenario is as follows: Initially, no fluid is flow-
ing in the well. After 10 s the main pump is started
at 1000 l/min, and the choke pump is started at
200 l/min. At 2min., the choke valve controller is
started. At 6min., the pipe connection is initiated,
and the main pumps are stopped, and the choke
line pump flow rate is increased to 400 l/min.
When the pipe connection procedure is finished
at 16min., the standard pump flow rates are se-
lected, respectively 1000 l/min and 200 l/min.

Two different simulations are performed. The first
simulation is shown in Fig. 3, where the low-
order model is used both for generating the mea-
surements and for the predictions. A constraint
of ±5 bar (compared to the reference pressure)
is included in the NMPC optimization. As can
be seen from the simulations, these constraints
are slightly broken. The main reason for this is
few ’coincidence points’ when checking state con-
straints.
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Fig. 3. NMPC simulated with low-order model
and perfect state measurements: At the top
is the controlled pressure (and the reference),
and at the bottom is the choke opening.

The second simulation shown in Fig. 4 is per-
formed using measurements generated by the de-
tailed model. The low order model used in the
NMPC is updated using the UKF observer to
match the model with the generated measure-
ments. In this case, the pressure constraints were
removed from the NMPC optimization problem
due to some problems during estimator transients.
The estimated parameters are shown in Fig. 5. As
can be seen, the model parameters varies some, es-
pecially the friction parameter for the choke line,
during and after the pipe connection. Due to this,
some oscillations in the down hole pressure can
be observed during and after the pipe connection.
Further examination of the observer system could
be a basis for further research.
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Fig. 4. NMPC simulated with high-order model
and state estimation: At the top is the con-
trolled pressure (and the reference), and at
the bottom is the choke opening.
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Fig. 5. Model parameters estimated by the UKF.

7. CONCLUDING REMARKS

In this paper, we tested an NMPC solution for
controlling pressure during oil well drilling. The
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NMPC optimization problem was formulated us-
ing a low-order model, and simulated on a rigid,
high-order simulator model.

The NMPC scheme is able to successfully control
the downhole pressure. The use of an NMPC
formulation based on system theory gives us an
NMPC optimization problem that is well behaved,
and gives a smooth input to the system. When
testing on the detailed simulator model, the state-
and parameter estimation causes some oscillatory
behavior and problems with the constraints. Fur-
ther work includes better tuning of the UKF used
for state- and parameter estimation.

Further research could also focus on including
some of the measured disturbances as manipu-
lated variables, such as the main fluid pump rate
and the choke line fluid pump rate.
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