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Abstract:
This work proposes a methodology to generate risk averse policies for Markov
Decision Processes(MDPs). This methodology is based on modifying the one stage
reward or cost to weigh the trade-off between expected performance and down-
side risk represented by (CV aRα). The modified stage-wise utility function is used
within dynamic programming to generate a set of policies representing different
levels of the trade-off. The approach is demonstrated in a shortest path optimal
control problem and a project management problem modeled as constrained MDP.
To address a more complex management problem, we utilize the Real Time
Approximate Dynamic Programming algorithm.
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1. INTRODUCTION

To analyze and account for risk due to uncertainty
in decision-making, the adoption of a quantita-
tive measure for risk is required. Such a measure
should not lead to counter-intuitive outcomes. For
example diversification should lead to risk reduc-
tion, not an increase. Artzner et al. (1999) defined
the class of ‘coherent’ risk measures as those that
satisfy the four axioms, which are sub-additivity,
monotonicity, positive homogeneity, and transla-
tion invariance. Commonly used risk measures like
standard deviation (σ) or Value at Risk (V aRα)
violate at least one of these properties and there-
fore can lead to counter-intuitive outcomes in

1 The authors gratefully acknowledge the financial
support from the National Science Foundation
(CTS#03019993)

certain situations. Details of why these measures
violate a certain axiom can be found in Benfield
(2005).

As an alternative to the popular (V aRα), a co-
herent risk measure called Conditional Value at
Risk (CV aRα) has been proposed in the recent
risk literature. CV aRα is formally defined for
an arbitrary loss distribution L as: CV aRα =
E[L|L < V aRα], which represents the mean of
the tail of the (1 − α) × 100 bottom percentile
of the distribution. In the above V aRα repre-
sents the cut-off value for the corresponding per-
centile. The most attractive characteristics of the
CV aRα measure are: a) consistency with the
mean-variance (Markowitz, 1952) approach in one
stage problems for normal loss distributions, b)
convexity leading to an attractive one stage opti-
mization problem via LP even for non-normal dis-
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tributions, and c) the capacity to handle fat tails
(e.g., Student-T distributions). A simplified de-
scription about optimizing CV aRα can be found
in Borca (2004-2005). In the same article, they
propose a two-stage LP formulation to minimize
CV aRα via external sampling.

Once such a quantitative measure for risk is
adopted, one should be in position to analyze
and synthesize decision policies based on it. Our
interest is in generating decision policies that re-
flect varying degrees of risk averseness of decision-
maker for general Markov Decision Processes
(MDPs). For this, the construction of a utility
function that weighs the trade-off between ex-
pected performance and risk is proposed, and then
the usage the dynamic programming (DP) frame-
work to generate optimal policies. An alternative
approach would have been to use the mathemat-
ical programming with “chance constraints”, but
such a formulation presents difficulties in having
to derive the multi-variable joint probability dis-
tribution of the random quantities. Hence, the
approach is practical only for special cases, e.g.,
when the random variables are normally distrib-
uted. For an excellent introduction of such for-
mulation, readers are referred to Henrion (2006).
Compared to the mathematical programming ap-
proaches the key advantage of approximate DP is
that it can be based on a procedural representa-
tion of the problem (essentially codes that perform
the simulation plus a relatively small amount of
book keeping overhead).

In using DP methodologies to solve multi-stage
decision problems, the handling of multi-stage risk
measures can be problematic, as their evaluation
over multiple stages will appear in a nested man-
ner. This means that, unlike profits or losses, risk
measures are inherently non-additive stage-wise.
In particular, minimizing CV aRα at each time
period will not amount to minimizing the CV aRα

of the actual multistage loss distribution itself,
even though it does result in minimizing a coher-
ent risk measure. Recent work has been done on
closed form calculation of the CV aRα statistic for
various distributions (Andreev et al., Sep. 2005).

For the well-known multistage newsvendor prob-
lem discussed in Ahmed et al. (2005), the authors
use for the one stage cost a mean risk objective
function, with CV aRα as the dispersion statis-
tic. They derive the optimality equations from
scratch, and show that given this objective the
structure of the optimal policy corresponds to
a policy that solves the myopic problem. The
derivation of the optimality equations should be
performed for every “new” problem, however

To our knowledge, within the chemical engineer-
ing community, the first significant series of papers
that combine DP principles and risk measures is

attributed to Westerberg and coworkers (Cheng et
al., 2004; Cheng et al., 2003; Cheng et al., 2004b).
Their first contribution is that they identified the
need for separability and monotonicity in order
for a risk measure to be able to be decomposed
into stage-wise separable functions. They propose
the expected downside risk as a risk measure, and
augment the state definition with an additional
dimension that ensures backward induction with
respect to the chosen risk measure. Their second
contribution is a simulation based optimization
approach that approximates optimal pareto (max-
imize expectation - minimize risk) solutions for a
multi-stage problem. They show that multi-stage
stochastic mathematical programming provides
higher quality pareto solutions, but their approach
circumvents several numerical issues associated
with mathematical programming. In their work,
the efficient frontier is well represented. Their
strategy is generic enough to be applied to MDP
instances with large state space. However, their
approach suffers from sampling issues as well as
the use of global value function approximators.
According to the research by Lee and Lee (2004),
global approximators cannot guarantee conver-
gence of the value function approximation and can
lead to non-smooth behavior.

The proposed strategy is based on formulating a
single-stage utility function that reflects a balance
between expected reward and risk for the stage.
From each system state si, given uncertainty ωt,
the expected one-stage cost (reward) for each ac-
tion ai denoted as E(f(si, ai, ωt)) as well as its
one stage conditional value at risk are evaluated.
Then one can define the one stage cost (reward)
C by weighting these two statistics with a prede-
termined risk averse parameter λ:

C(si, ai, ωt) = λE(f(si, ai, ωt)) (1)
+(1− λ)CV aRα

The formation of a multi-stage loss function can
be achieved by adding this cost function over all
stages. Such formulation satisfies the requirement
of separability and monotonicity, needed for ap-
plication of dynamic programming.

To illustrate that the proposed modification of
the single stage captures the tradeoff between ex-
pected profit and risk - and the adjustment of the
linear weigh parameter yields risk averse policies
of varying degrees, the following two examples are
used: a) a shortest path problem with normally
distributed costs, and b) a stochastic project-
management problem modeled as a constrained
MDP. These problems are small enough that ex-
act solutions via dynamic programming can be
achieved. Then we expand the state space of the
latter problem by relaxing the resource constraint
and we address it via an approximate DP method.
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1.1 A Shortest Path Problem

In this section dynamic programming is applied
via value iteration at a 2D shortest path setting
represented at Figure 1. This problem enumerates
77 discrete states. The state space consists of all
the positions in the x-y plane, while the action
space includes the moves to neighboring positions
(including those reachable via diagonal moves).
The starting state is (x, y) = (0, 0), while the end
state is (x, y) = (10, 6). One incurs a normally
distributed cost C(x,y) ∼ N(µ(x,y), σ(x,y)) for each
state visited. In the case, where the cost follows
an unknown distribution, one should use DP with
Bayesian updates over the unknown cost distrib-
ution.

Our goal is to find the path from (0,0) to (10,6),
that minimizes the expected cost and simultane-
ously minimizes the cost associated with the (1-
α)× 100% worst cases.

If one cares to solve for a risk neutral policy one
would include in the one stage cost C only the
statistic µ(x,y). Similarly, if one wants to solve
for a risk averse policy, when visiting state (x, y)
the one stage cost is modified to C = λµ +
(1− λ)CV aRα and repeat the value iteration for
different values of the risk averse parameter λ. To
calculate the CV aRα for normal distributions, the
following formula is used CV aRα = µ+kσ, where
k =

√
2 exp(erf(2α− 1)2)−1(1− α)−1.

For α = 0.95 the resulting optimal policies are
shown in Fig. 1. The cumulative numerical results
are illustrated at Table 1 for α = 0.95 for different
values of λ. Theoretically, if α is increased the
derived policy is inherently more risk averse for
the same values of λ.

The final result for α=0.95 depicted in Fig.1 is
as such: For λ=1 the shortest path minimizes
the expected cost, and is represented with the
solid line in Figure 1. The mean cost of that
policy is 202, while its standard deviation is 32.5.
The corresponding CV aR0.95 = 269.9. Parameter
value λ=0 results in the most risk averse policy
that can be derived with this methodology. That
policy is represented with the dashed line in Fig.1.
The mean cost is 206, while its standard deviation
is 14.5. That results in a CV aR0.95 of = 235.9.
The cumulative results appear at Table 1. α =
0.99 has been also tried. This choice of α results
in the same policies with slight differences in the
range of λ values corresponding to each policy.
(The λ value range for the first policy is 0.0–0.3
instead of 0.0-0.1.)
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Fig. 1. Schematic illustration of a 2D shortest path
problem. It demonstrates how an appropriate
tuning of the λ parameter can instruct a
different policy. α is set to 0.95

Cost Distribution µ0.95 σ0.95 CV aR0.95

λ ∈ [0,0.1] 206 14.5 235,9
λ ∈ [0.2,0.9] 205 21 248.2
λ=1 202 32.5 269.9

Table 1. The mean µ and standard de-
viation σ of the cost distributions asso-
ciated with the different policies accord-

ing to λ values. (α=0.95)

1.2 Stochastic Resource Constrained Project Management
Problem

Griffin (1997) research indicates that almost half
of the resources that U.S. industry devotes to New
Product Development (NPD) are spent on prod-
ucts that fail to be launched. Such uncertainty
motivates the use of optimal stochastic control to
optimize the usage of resources to projects that
satisfy the decision makers risk averse criteria.
Optimal stochastic control can be applied only via
DP or multistage stochastic programming.

1.2.1. Problem Description In the proposed
project management problem, the process of new
project arrival D is dictated by a first order
Markov Chain. In our case only three types of
projects can arrive. Each project can be processed
via a 5 stage specialized pipeline.

For each project, one can choose between two
types of pipe lines, one with high-risk / high-
return and the other with lower-risk / lower-
return. Hence there are six possible pairings of
project type (not up to the choice of the decision-
maker) and pipe-line type (up to the choice of the
decision-maker). Each pairing is characterized in
terms of: a) profit distribution (i.e., the profit is
realized, if the project is successfully launched), b)
required resources at each time period while it is in
the pipeline, and c) probability of project failure
at each time period. A further twist is added to
this problem, by modeling the progress of each
project with a two state Markov Chain. Due to
this, at each time period the project will either

155



progress to the next stage or stay static at the
same stage according to a given probability.

Also, in order to capture and hedge the risk in
this application, the probability of failure is set
to be commensurate with the expected profit of
each project. Available resources are constrained
and projects can be canceled at any time (without
any profit). All these features make it a complex
decision problem. In order to solve for the optimal
policy for this constrained MDP, rules have to be
defined to ensure that each action will result in
transitions from the original state si the feasible
states.

1.2.2. State-Action Space The state space S
has 16 variables. S={(D, ni,j), i = 1, 2, 3 ∧ j =
1, 2, 3, 4, 5|∑i,j ni,jKi,j ≤ Θ}. D is the Markov
state that corresponds to the type of the possible
arriving product at the next time period and ni,j

denotes the number of projects of type i in the
jth stage of the ith pipeline. Ki,j corresponds to
the number of resource units needed to continue
a project of type i in the jth stage. Hence, the
total number of resource units available is Θ. The
action space A contains a) actions that accept or
reject incoming project arrivals, and b) actions
that direct a project either to the low risk or the
high risk pipeline.

1.2.3. Transition Function The transition func-
tion from state si to sj ’s will undergo three steps.

Step 1 Apply desired control on si.
Step 2 Observe the derived state and calculate

the automatic transitions. All the possible sj ’s
correspond to the uncertain Markov process
of the progress of the on-going projects given
initial state si. Each state sj is associated with
a transition probability Psi→sj . Assuming N

possible transitions then:
∑N

j=1 Psi→sj = 1.
Step 3 For each state sj the next possible transi-

tions correspond to the uncertain process of sur-
vival or termination of the individual projects.
If one denotes those states by sjj , and with
M the possible transitions, for each sj : then∑M

jj=1 Psj→sjj = Pj .

1.2.4. Reward Function Using Bayes rule one
can calculate the expected profit for each project.
The recursive formula for the expected profit for
a project at stage i is:

E(i) =
Pr(i → i + 1)P (s)

(1− Pr(i → i))P (s)
E(i+1) (2)

where, E(i) is the expected value of a project at
stage i of the pipeline, P (s) is the probability of
the project still remaining in the pipeline, and
P (i → i + 1) is the probability of the project

progressing to a next stage. If the last stage is
successfully reached, a profit value is realized from
the given profit distribution.

1.2.5. Comments on Full DP Results The simu-
lation baseline parameters are displayed in Figure
2.
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Fig. 2. Simulation Baseline Parameters.

PPG−x−i is the Markov Chain that describes the
progress of a type i project via the pipeline x (the
type of pipeline can be of low risk (LR) or high
risk (HR)). Profitx−i corresponds to the normally
distributed uncertain reward of a launched project
i via the pipeline x . Px−y is the probability that
the type y project does not fail at the current time
period and continues to occupy Ky resource units.
The probabilities PD1→D1 and PD2→D2 define the
Markov Chain of the future arriving states. If the
arrival state D1 is experienced there is a 50%
chance for a project type 1 to appear in order to
be processed and a 5% chance for a project type
3 to appear. Likewise for arrival state D2.

The feasible state space (due to the resource
constraint) for this instance is 892 states out of
the possible 26,871. The curse of dimensionality
(COD) is mainly attributed to the difficulty in
calculating the one step expected reward. Note
that, the computational requirement for that op-
eration increases exponentially with the number
of projects handled by the pipelines. From the
results displayed in Table 3, one can see that
the choice of parameter value λ = 0 gave the
most risk averse policy possibly obtained with our
methodology. Also, one could not create a more
risk averse multistage policy by increasing α for
this particular problem. To test the derived strate-
gies we sampled 250 scenarios. As expected the
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risk-averse strategy sacrifices the expected profit,
but increases the CV aRα and vice versa.

Profit µ0.99 CV aRα µ0.95 CV aRα

Distr. (*104) α=0.99 α=0.95

λ = 0 4.2 2.7 4.2 2.7
λ = 1 6.1 2.4 6.1 2.4

Table 2. Statistics of the profit distribu-
tions obtained with the policies for dif-
ferent values of α and ω for the project

management problem.

2. SOLVING MORE COMPLEX PROBLEMS

In larger applications exact DP is computationally
intractable. Therefore we have to resolve to ADP
algorithms. The trick is that ADP algorithms
are usually specialized to a particular application
and they almost never claim generality. To our
knowledge and experience, state of the art ADP
algorithms that may produce satisfactory results
to a general problem are (Powell, 2006) (Farias
and Van Roy, 2003) (Lee and Lee, 2004).

Our proposed ADP strategy is based on Real
Time Dynamic Programming (RTDP) (Barto et
al., 1995) and is named Real Time Approxi-
mate Dynamic Programming (RTADP). In the
proposed RTADP strategy, one approximates the
value functions in the regions of the state space,
visited by effective “risk-sensitive” policies. It
adaptively samples portions of the state space as
it simulates the system behavior under a greedy
or a ε-greedy exploration strategy.

In Section 2.1, the RTADP algorithm is analyzed
and. Then in section 2.2, RTADP is applied to
the same project management problem with an
enlarged state space. This is achieved by relaxing
the resource constraint. The quality of the derived
policy is then evaluated for λ = 0 and λ = 1 via
Monte Carlo simulations.

2.1 The RTADP Algorithm

The procedure below samples the state space
using a greedy policy and constructs a value table
denoted as Ssim starting from an empty one by
gradually adding entries, as states are encountered
in the simulation. The following steps are involved
in each iteration of the algorithm.

For iterations i = 1, 2, ...M , where M is a suf-
ficiently large integer

Step 1 Start from a random state si ∈ Ssim .
Step 2 Construct set of actions (denoted by

Asub) for si. Asub ⊂ A, where A is the set
of all possible controls that the decision maker
can exercise at any time instance for a given

state. Details about the notion of Asub (called
‘Adaptive Action Set’) and how it is numer-
ically constructed are given in (Pratikakis et
al., 2006).

Jπ
i+1(si) = max

α∈Asub

{φ(si, α, ωt)+ (3)

γ

N∑

j=1

Psj |si,αJπ
i (sj)}

, where γ is a discount factor γ ∈ [0, 1).
Step 3 Update the value functions for Jπ

i (si)
according to Eq.(4).

Every control in Asub is evaluated with re-
spect to the Bellman Equation (Eq.(3) and the
decision -maker follows a policy that is greedy
with respect to the most recent estimate of the
value table (Eq.(4)).

α∗(si) = arg max
α∈Asub

{φ(si, α, ωt)+ (4)

γ

N∑

j=1

Psj |si,αJπ
i (sj)}

This evaluation (Eq.(3) requires knowledge of,
if not an estimation of Jπ

i (sj) ∀j. j denotes
an index running from 1, ..., N , where N is the
number of possible transitions from the starting
state si to the successor states sj . N may vary
with the iteration number (e.g., if si does not
fully communicate with some sj ’s). The inter-
ested reader can find more insight about the
how to circumvent the computational obstacles
associated with the optimality or Bellman equa-
tion in (Powell, 2006).

Step 4 A state sj is sampled according to the
probability distribution p(sj |si, α

∗) as defined
from the Markov model of the random vari-
ables. If sj does not belong in Ssim, then it is
added to the table as a new entry. The sampled
sj is set as si+1. Set i = i + 1 and go back to
Step 1.

End

Note that, if the algorithm happens to circulates
over a small cyclic graph of states, the algorithm
is restarted from a random state si ∈ Ssim.
Empirically, one terminates with : (‖Jπ

i+1(si) −
Jπ

i (si) < ε‖∞ ∀si ∈ Ssim ⊆ S ) like in VI, where
ε is a tolerance parameter. The user can apply this
termination criterion, only if the state space is sat-
urated and the number of entries does not grow.
In Pratikakis et al. (2006) it is analyzed how this
ADP approach differs from the classical RTDP.
Moreover it is emphasized and discussed the im-
portance of initialization of the value function for
unseen successive states in balancing between the
exploitation and exploration.
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2.2 Resource Constrained Project Scheduling Problem
with Enlarged State Space

By relaxing the resource constraint (Θ = 400) the
feasible state space S compared to the previous
example is enlarged by one order of magnitude.
Specifically, the feasible state space consists out
of 24,871 states. If the above hard constraint was
not imposed then the state space would consist
out of 2,672,646 states.

The results obtained by applying RTADP are
summarized in Table 3. Note that, the tried re-
alizations are only 100.

Profit µ0.95 CV aRα |S|
Distr. (*103) α=0.95

λ = 0 7.2 -6.2 ' 6100
λ = 1 9.1 -5.9 ' 3400

Table 3. Statistics of the profit distrib-
ution, after applying the policy learned
by the RTADP from a given initial state
for λ = 0 and λ = 1 for 30 time periods.

The policy derived using the objective function
from Eq.1 with λ = 1 is superior than the policy
with λ = 0. This result indicates that the pro-
posed methodology is quite sensitive to the choice
of the baseline parameters of a given problem.
Nonetheless, the RTADP procedure (with λ = 1)
instructs a high quality policy for this complex
project management problem.

3. CONCLUSIONS

Our proposal to solve for a multi-stage risk averse
policy lies in modifying the expected reward into
a pseudo-utility function. The statistics that are
weighed, by parameter λ, in this function are the
expected profit and the downside risk measured
by CV aRα. Our contributions are: a) providing a
mechanism to solve for policies of varying degrees
of risk-averseness for general MDPs; b) provid-
ing empirical results that demonstrate, that the
separable pseudo-utility functions, give converged
value functions that lead to risk averse multistage
policies directly controlled by the tuning parame-
ter λ; c) demonstrating the fact that RTADP can
be used to solve combinatorial problems with large
state space.

The on-going research involves to couple this
RTADP approach with local regression meth-
ods to minimize the COD concerning the k-
nearest neighbor local value function approxima-
tion scheme. Solving problems involving multiple
agents is another topic of interest.
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