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Abstract: Occurrences of sensor / actuator failures can lead to signifi-
cant degradation in the closed loop performance when conventional feed-
back controllers are used. In this work, we propose an active failure toler-
ant LQG (FTLQG) control scheme, which employs model based fault diag-
nosis for on-line reconfiguration of state estimator on diagnosis of failures.
Generalized likelihood ratio (GLR) method proposed in the literature is ex-
tended for diagnosis of sensor failures. Recurrence relationships are derived
for diagnosing sensor failures, which are amenable for on-line computations.
The efficacy of the proposed FTLQG scheme is demonstrated using sim-
ulation and experimental studies on a laboratory scale heater-mixer setup.
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INTRODUCTION

In processing plants, there are various reasons for
degraded performance or complete loss of system
functions. These include different faults, unknown
disturbances, modeling uncertainties or complete
failure of system components. The effect of un-
known disturbances and modeling uncertainties
can be suppressed considerably by appropriate
measures like filtering or robust design of con-
trollers. However, sensor and/or actuator failures,
which have considerable deteriorating effect on
the closed loop performance, are difficult to han-
dle through such a passive approach. Such failures
have to be diagnosed on-line as quickly as possible
and actively accommodated in order to arrest
propagation of their effects.
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Active failure tolerance can be achieved by em-
ploying fault diagnosis techniques on-line and re-
designing /restructuring controller on diagnosis of
failures. Variety of active reconfiguration control
techniques have been proposed in the literature.
Konstantopoulous and Antsaklis(1996) have pro-
posed an active reconfiguration strategy based on
eigenstructure assignment. Their approach aims
at placing the eigenvalues of the closed loop sys-
tem at desired locations under variety of failure
conditions. Kanev and Verhaegen (2000) have pro-
posed to enumerate all expected failure scenarios
and construct models, which describe the dynam-
ics of each failure situation. When a failure occurs
this scheme switches to a pre-computed control
law corresponding to the current failure situation.
This technique works well with systems with rel-
atively few and well understood failures. Yang et



al.(2000) have proposed design of reliable LQG
controller with sensor failures in which closed loop
stability is ensured in the event of sensor failure.
Recently, Deshpande et al. (2005) have proposed
a fault tolerant nonlinear model predictive control
formulation in which modifications are made in
the controller objective function and constraint
set to account for the loss of a degree of freedom
when actuator failures are diagnosed.

In this work, we propose a failure tolerant LQG
(FTLQG) controller, which employs model based
fault diagnosis for on-line reconfiguration of state
estimator. Narasimhan (1987) has shown that
generalized likelihood ratio (GLR) method pro-
posed by Wilsky and Jones (1974) can be used
for diagnosing actuator failures. In this work, we
extend the GLR method for diagnosis of sensor
failures. Recurrence relationships are derived for
diagnosing sensor failures, which are amenable for
on-line computations. The efficacy of the proposed
FTLQG scheme is demonstrated using simulation
and experimental studies on a laboratory scale
heater-mixer setup. The rest of this article is
organized as follows. The next section provides
a brief review of GLR based FDI scheme and
reconfiguration of the state estimators used in FDI
and LQG formulation, under sensor failures. Sec-
tion 2 presents the details of experimental work.
The major conclusions reached from experimental
work are given in section 3.

1. FAULT DIAGNOSIS AND
ESTIMATOR RECONFIGURATION

This section provides a brief review of GLR based
FDI scheme and integration of FDI scheme with
state estimator.

1.1 Model for Diagnosis and Control

The main component of Fault tolerant control
system is a model describing process dynamics,
which is used to develop Kalman filter(KF). Let

x(k+ 1) = ®x(k) + Tyu(k) + Lye(k) (1)
y(k) = Cx(k) + (k) (2)

represent the innovation form of state space model
identified from the input output perturbation data
obtained under fault free conditions. Here x(k) €
R™ represents state variables, u(k) € R™ rep-
resents manipulated inputs to process, y(k) €
R" represents measured output and (k) is a white
noise sequence with covariance matrix V. This
model is equivalent to a process with following
state space representation

x(k+1) = ®x(k) + Tyu(k) + w(k)
y (k)

3)

= Cx(k) + v(k) (4)
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where v(k) and w(k) are zero mean Gaussian
white noise sequences with known covariance ma-
trices given as follows

R, = E[w(k)w(k)"] = L,VL, (5)
Ri» = E[w(k)v(k)"] = L,V (6)
Ry = Blv(k)v(k)] =V (7)

While formulating GLR based FDI scheme, it is
assumed that equations (3)-(4) represent plant dy-
namics under normal operating conditions. These
equations are also used to formulate and solve
steady state Riccati equation and compute con-
troller gain matrix K,,. To handle plant model
mismatch arising out of actuator biases or input
disturbances in LQG formulation, artificial states
are introduced as follows

x(k + 1) = ®x(k) + Ty [u(k) + Bk)] + w(k)8)
B(k + 1) =pB(k) + ws(k) (9)
y(k) = Ca(k) + v(k) (10)

where 8 € R™ are artificially introduced input
disturbance vectors while wg € R™ is a zero
mean white noise sequences with covariance Qg.
The elements of noise covariance matrix Qg are
tuning parameters, which can be chosen to achieve
desired closed loop disturbance rejection charac-
teristics. This augmented model is used to design
a state estimator (augmented KF') necessary for
implementing the LQG controller. The resulting
control law is given as follows

u(k) = uy ( ) — Koo [X(k) —x,(k)]  (11)
u, (k) =K, (k) - ﬁ(k) (12)
xs(/f) =(I-®) 'T.K, 'r(k) (13)
=C(I-2)'l, (14)

where X(k) represents estimated state vector us-
ing augmented KF and r(k) represents setpoint
vector. It may be noted that the artificially added
states B(k) can handle the plant model mismatch
that arises due to disturbances but cannot handle
the plant model mismatch arising from failure of
sensor or actuator.

1.2 Fault Diagnosis

Under normal operating conditions, the state es-
timates used in FDI scheme are generated using
Kalman filter of the form

R(k + 1)k) = ®%(k|k) + Tyu(k) (15)
%(k|k) = ®R(k|k — 1) + Ly(k)  (16)
v(k) = y(k) — Cx(k[k — 1) (17)

where L represents the steady state Kalman gain.
When process starts behaving abnormally, the



first task is to detect the deviations from the nor-
mal operating conditions. To simplify the task of
fault detection, it is further assumed that, under
normal operating conditions, the innovation se-
quence from KF, {v(k)} is a zero mean Gaussian
white noise sequence with covariance V (k). Under
this assumption, a simple statistical test namely
fault detection test (FDT) as given in Prakash et.
al.(2002) based on the innovations obtained from
the normal KF is applied at each time instant to
estimate the time of occurrence of a fault. The
test statistic for this purpose is given as follows-

e(k) = (k)" V (k)" y(k) (18)

Since it is assumed that innovation sequence is
a zero mean Gaussian white noise process, the
above test statistic follows a central chi-square
distribution with r degrees of freedom, which can
be used to fix the threshold. If FDT is rejected,
the occurrence of a fault is further confirmed
by examining innovation sequence in the time
interval [t,t + N]. The test statistic given by
equation 19 is used for this purpose, which follows
a central chi-square distribution with (N + 1)
degrees of freedom.

t+N

Y YRTV(k)

k=t

If this test statistic exceeds the threshold, the
occurrence of the fault or failure is confirmed. This
is referred as fault confirmation test (FCT).

e(t,N) =

(k) (19)

1.8 Fault Models

Once the occurrence of a fault is confirmed, the
next step is to isolate the fault and estimate its
magnitude. To identify the failures that might
have occurred, it is necessary to develop a model
for each hypothesized failure that describes its
effect on the evolution of the process variables.
When j** actuator fails abruptly at instant t ,
then Narasimhan (1987) have proposed following
model for the failure mode

t,, (k) = m(k) (20)

+ b €, — e;gjm(k)em].] o(k —©1)

where 7 € 1 to m , by, represents constant
value at which the j**actuator is stuck and €m;
represents fault vector with j** element equal
to unity and all other elements equal to zero.
Note that this model distinguishes between the
controller output m(k) and manipulated input
u(k) entering the process. Here o(k—t) represents
unit step function. When j** sensor fails abruptly
at instant ¢, we propose to model the behavior of
the measurement vector subsequent to the failure
as follows
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¥s; (k) = Cx(k) + v(k)

+ [bs,es, — e Cx(R)ey, | ok — 1122)

where j € 1 to 7, bs, represents constant value at
which the j" sensor is stuck and ey, represents
fault vector with j** element equal to unity and
all other elements equal to zero.

1.4 Failure Isolation and Estimation

Each failure influences the innovations term in a
different manner and this fact can be used for fault
isolation. In the absence of any failure, innovation
sequence is a zero mean Gaussian white noise
process. However, if an actuator or sensor gets
stuck at a constant value by, at time ¢, the
expected values of innovations at any subsequent
time can be represented as (Narasimhan, 1987)

Vi, (k) = [Y(k)+bys, Gy (ks t)ey, +8,, (kit)] (23)

where k£ > ¢ and subscript f denotes the fault
type. Gy, (k;t) is referred to as signature matrix
and depends on time ¢ at which a fault occurs
and time k£ at which innovations are computed
and also on the fault location. The vector g (k;t)
which we refer to as the fault signature vector, also
depends on the fault type and location. Similarly,
the expected values of state error after occurrence
of a fault can be expressed as

E(0xy, (k) = by, 3y, (ki t)ey, +3, (kit)

where dxy, (k) X(klk — 1) — x(k) and x(k)
represents the true value of the state vector. The
signature matrices and signature vectors for each
hypothesized fault can be precomputed based on
the appropriate fault model and KF equations.
Signature matrices and signature vector for state
correction and for contributions to innovations in
the event of j* sensor failure are as follows

(24)

Jg, (kit) = ®J,, (k — 1;t) + LG, (k — 1;t)(25)
o, (1) = ®j, (k — 131) + g, (k— 1;1) (26)
G, (kit)=1— C®J, (k1) (27)
gs, (k;t) = —eSTJ_ Cx(k)es; — C®j,, (k — 1;4p8)

where I is the identity matrix. The difficulty in
using equation (28) is that it requires knowledge
of true state vector x(k). To alleviate this dif-
ficulty, we propose to use X(k|k) given by KF
in place of x(k), under the assumption that ob-
servability is not lost with the failed sensor. The
detailed derivations for equations (25)-(28) are
given in Appendix. Signature matrices and signa-
ture vectors in case of actuator failure are given
in Narasimhan (1987). Once the occurrence of a
fault is confirmed by FCT, GLR method is used
for isolating the cause of fault and estimating
its magnitude using the innovation sequence in



time interval [¢,¢ + N]. In this method, for each
hypothesized fault the log likelihood ratio,

d?p t+N
Ty = o+ 2 2es (k) VR (k)
J k=t

—gy, (k1) V (k) gy, (k; )

is computed using

t+N
d, =ep, Y Gy (ki) V(E)y(k)
k=t
t+L
c, = e?j Z Gy, (k; )V (k) ' Gy, (k;t)ey,
k=t

The fault with maximum value of this ratio is
the fault that is isolated and the corresponding

estimate of magnitude is given as by, = dy, /cy,
where f denotes the fault type either sensor or
actuator failure.

1.5 State Estimator Reconfiguration

Consider a situation where FDT has been rejected
at time instant ¢ and subsequently a fault is con-
firmed to have occurred at time ¢t + N for the
first time. Further let us assume that at instant
t + N, a sensor failure has been diagnosed us-
ing GLR method using the data collected in the
interval [t,¢ + N]. During the interval [t,t + N],
the LQG controller is unaware of the failure and
continues to use the faulty sensor measurements
for state estimation. Once the occurrence of failure
is diagnosed, the measurement from the failed
sensor is removed from Kalman filters used in
FDI scheme and LQG controller. Measurement
error covariance matrix R and output matrix C
are also modified accordingly. In effect, we switch
over to inferential control where the output corre-
sponding to the failed measurement is estimated
using other available measurements. It may be
noted that the proposed modification is possible
only when the system observability is preserved
under the sensor failure. In order to avoid repeated
detection of the same failure in future, the failed
sensor measurement is also excluded from our
failure hypothesis in FDI.

In the event of actuator failure, we propose to
reconfigure the controller by exploiting additional
degrees of freedom that are available in the sys-
tem. Once actuator failure is detected and con-
firmed by FDI, the augmented model used by
controller and the unaugmented model used by
FDI unit are modified to include estimated fault
magnitude. Also, subsequent to isolation of an
actuator failure, the input corresponding to the
failed actuator is held constant at value estimated
by the FDI unit.. In case additional degrees of
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freedom are available, the controller is reconfig-
ured to employ the additional input(s) available
for manipulation, subject to controllability condi-
tion being satisfied.

2. EXPERIMENTAL VERIFICATION

The experimental heater-mixer set up consid-
ered for the study consists of two stirred tanks in
series as shown in fig 1. A cold water stream is
introduced in the first tank. The content of the
first tank is heated using 4kWH heating coil. The
hot water that overflows the first tank is mixed
with cold water stream entering in to second tank.
The content of the second tank is heated using an-
other 3kWH heating coil. The heat inputs to both
the tanks can be manipulated continuously using
thyristor power control units. The cold water inlet
flow to both the tanks can be manipulated using
pneumatic control valves. The temperatures in the
two tanks (77 and 7%) and level in second tank
(ha) are measured variables while the heat inputs
to first and second tanks (u; and wug) and cold
water inlet to Tank 2 (u3) are treated as manip-
ulated inputs. The cold water flow to first tank
is treated as constant input. The detailed model
and nominal parameters are given in Srinivasrao

et. al., (2005).
For model identification, the steady state operat-

ing point of the process is chosen as [T} = 56°,
T, = 52° and hy = 0.36 m | and each of the
nominal steady state input to the plant has been
set to 12 mA. The three inputs were perturbed
simultaneously with random binary signals (RBS)
of amplitude 2.5 mA, 2.5 mA and 2 mA respec-
tively in the frequency band [0, 0.005]. A linear
state space model having four states was identified
using System Identification Toolbox in Matlab.
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2.1 Sensor Failure:

To evaluate the performance of FTLQG based
on this model, a sensor failure was simulated by
artificially holding the temperature measurements
T, constant in the control computer at 6° below its
steady state value subsequent to 145" sampling
instant. Failures have been hypothesized in sen-
sors (T1,Ts, he) and actuators (ug,us,us). GLR
based failure detection test has been used whose
parameters are listed in Table 1.

Table 1. GLR Parameters

Variable description Value

Simulation time 1250 sampling instants

Window length N 50 sampling instants

Level of significance for FDT 0.5

Level of significance for FCT 0.005

The objective of FTLQG is to track the desired
set point trajectories for temperature of liquid
in Tank 1 and 2 (71, T2) and level of liquid in
Tank2 (hy) in the face of failure of temper-
ature sensor. As evident from Figures (2) and
(3), the proposed FTLQG is able to track Ts
setpoint using its inferred value after diagnosis
and accommodation of the failure.

2.2 Actuator Failure:

In this case, the objective of FTLQG is to track
set point trajectories of Thand hy by manipulating
heat input to Tank 2 (us) and flow to Tank2 (u3).
In the event of failure of actuator for heat
input to Tank 2 (us), the objective of FTLQG
was to detect and confirm the failed heater for
Tank 2 and reconfigure the controller online by
switching to another LQG control law that brings
T, and ho to their set points by manipulating
heater input in Tank1 (uq) and flow input to Tank
2 (us). Failures were hypothesized in sensors (7%,
hse) and actuators (ug, uz). As shown in Figures
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4 and 5, input to heater in Tank 2 was stuck
at 25th sampling instant where the true input
was -0.53 mA. The set point change for T was
given at 30*" instant. The failure was isolated by
the FDI unit at 85! sampling instant with an
estimated magnitude of —0.601 mA. After failure
isolation, new LQG controller was implemented,
which manipulates heater input in Tank1 (u;) and
flow input to Tank 2 (ug). It is evident from figure
4 that the reconfigured control law is able to track
the desired set point change.

3. CONCLUSIONS

Analysis of experimental results reveals that the
proposed GLR based FDI method is able to de-
tect and isolate the failed sensor and actuator
correctly. The proposed FTLQG is able to recover
the performance degradation caused by failed sen-
sor. This is achieved by removing the faulty sen-
sor measurements from measurement set used for
state estimation and continuing control using the
inferred value of failed measurement. The pro-
posed FTLQG is also able to reconfigure itself
online under actuator failure and meet the desired
performance specifications.
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4. APPENDIX: COMPUTATION OF
SIGNATURE MATRICES

Let us assume that j* sensor fails at instant ¢.
Then, for all £ > ¢, the process states are given
by equation 3 and the output be given as

Ys; (k) = Cx(k) + v(k) (29)
+ [bsj e, — esTj Cx(k)esj] o(k—1)

where e, is a vector of faults having a nonzero
entry only at j** location and bs, is a constant
value at which the sensor is stuck. Let us also
assume that the FDT has been rejected at time
t and FCT has been rejected at instant ¢ + N.
During the interval [t,t + N], the state estimates
are still generated using the normal state estima-
tor (15)-(17). Under these conditions, it is desired
to develop recurrence relationships for describing
the effect of failure on the evolution of system and
estimator variables. Let the difference between
true state and estimated state under sensor failure
be given as follows

5%, (k) = %4, (k[k) — x(k) (30)

where X, (k|k) is the estimated state under sensor
failure and x(k) is the true state. Then, using
standard Kalman filter equations, we can obtain
the following relations:

Xs, (k|k) =X, (k[k — 1) + Ly, (k) (31)

Ry, (klk — 1) = ®%,, (k — 1)k — 1)
+Tu(k — 1) (32)
Y5, (k) =y, (k) — Cxy, (k[k — 1)) (33)

where L is the Kalman gain and v, (k) is the

innovation vector at k under j'* sensor failure.
From equations 29 to 33 and equation 3, we can
write
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7., (k) = v(k) — C®5Z,, (k — 1) + by e,

—ezj Cx(k)es, (34)
and
0%, (k) = (I - LC®)dx,, (k — 1)
+Lb e, — Lel Cx(k)es, (35)

Now, let us define the linear dependence of ex-
pected values E[(6Xs; (k))] and E[(v,, (k))] on the
failure by following relations:

E[(6%s, (k)]
El(vs, (K))]

where J, (k;t) and G, (k; ) are the signature ma-
trices and js, (k,t) and g, (k,t) are the signature
vectors for state correction and contributions to
innovations in the event of j* sensor failure, re-
spectively. From equations 34 to 37 we can obtain

the relations given in equations 25 to 28

J,, (kit)es, + s, (k1) (36)

= bsj st (k, t)eSj + 8s; (ka t) (37)

5. REFERENCES

Deshpande, A., Patwardhan S. C.,Narasimhan S.
(2005) Integrating Fault Diagnosis with Nonlin-
ear Predictive Control, Proc. of International
Workshop on Assessment and Future Direc-
tions of Nonlinear Model Predictive Control,
Fruedenstadt-Lauterbad, Germany, (NMPC’05,
August 26-30.), 419-426.

Kanev, S., Verhaegen, M. (2000), Controller Re-
configuration for Non-linear systems, Control
Engineering Practice, 8,1223-1235.

Konstantopoulous, I.K., Antsaklis, P.J. (1996),
Eigenspectrum assignment for in reconfigurable
control system, Technical report, Interdiscipli-
nary Studies of Intelligent Systems.

Prakash, J., Patwardhan, S.C., Narasimhan,
S. (2002), A Supervisory Approach to Fault-
Tolerant Control of Linear Multivariable Sys-
tems”, Ind. Eng. Chem. Res.41 (9), 2270-2281.

Shankar Narasimhan, (1987) A Generalized Like-
lihood Ratio Method for Identification of gross
Errors, Ph. D. Thesis, Evanston, Illinois.

Srinivasrao, M., Patwardhan, S.C., Gudi, R.D.
(2005), From Data to Nonlinear Predictive
Control: Part 1.Identification of Multivariable
Nonlinear State Observers, Ind. Eng. Chem.
Res.45, 1989-2001.

Wilsky, A. S., Jones, H. L.(1974) A Generalized
Likelihood Ratio Approach to the Detection
and Estimation of jumps in linear systems,
IEEE Trans. on Automatic Control.21 (1), 108-
112.

Yang, G.H., Wang, J.L., Soh, Y.C. (2000) Reli-
able control of discrete time systems with sensor
failure, IEE Proc. Control Appl.47(4), 433-439.



