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Abstract: An approach for the optimal transition control of diffusion-convection-
reaction processes based on finite-dimensional models is presented. The finite-
dimensional state-space models are constructed directly from the process PDE
through application of orthogonal collocation on finite elements in the spatial
domain. The dimension of the derived state-space model can be further reduced
using standard model reduction techniques. The optimal controller is designed
based on the finite-dimensional state-space model using continuous-time linear
quadratic regulator (LQR) techniques. Copyright c©2007 IFAC
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1. INTRODUCTION

Distributed chemical processes are naturally de-
scribed by partial differential equations (PDEs)
that are able to describe the spatiotemporal evo-
lution of the process dynamics. Representative
examples include chemical vapor deposition of
semiconductor materials (Theodoropoulou et al.,
1998) and fluid flows (Graham et al., 1999) etc. In
order to develop accurate numerical solutions, the
PDEs are usually converted to and solved as or-
dinary differential equations (ODEs) or algebraic
equations using numerical methods like finite dif-
ference, finite element and finite volume (Liu and
Jacobsen, 2004; Ammar et al., 2006). Generally
speaking, the resulting state-space model is of
high dimension in order to precisely describe the
spatial characteristics, especially when sharp gra-
dients exist in the spatial domain. In order to
develop dynamic optimization algorithms or feed-
back control systems suitable for real-time imple-
mentation, advanced model reduction techniques
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such as Galerkin projection with empirical eigen-
functions, combination of Galerkin’s method with
approximate inertial manifolds, Krylov subspace
and balanced truncation have been proposed to
derive low-order ODEs with reasonable accuracy
(Armaou and Christofides, 2002; Christofides,
2001). The controller is then designed based on
the resulting reduced-order models, resulting in a
significant reduction in computational effort.

In this work, we will present an optimal con-
trol approach for diffusion-convection-reaction
processes using reduced-order models. In this
case, a number of high-order Lagrange interpo-
lation polynomials are applied on a finite num-
ber of collocation elements in the spatial domain
to directly derive a low-dimensional differential-
algebraic equation (DAE) model (Quarteroni and
Valli, 1997). Such a DAE can be converted to a
continuous-time state-space model by incorporat-
ing the boundary conditions into the ODEs in the
spatial domain. If necessary, the dimension of the
derived state-space model can be further reduced
using model reduction techniques. In either case,
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Fig. 1. Steady-state spatial profiles of the concen-
tration before transition and after transition.

the optimal control laws are designed based on the
finite-dimensional models or their linearized forms
using continuous-time linear quadratic regulator
(LQR) control techniques.

The proposed method is applied to a concen-
tration transition problem in an isothermal dis-
persed tubular reactor. The concentration transi-
tion problem is an important subject at the inter-
face of reactor engineering and process control.
This type of problem arises in modern chemi-
cal plants which generally make various products
that differ in composition only in order to sat-
isfy the needs of different customers. Represen-
tative industrial examples include grade transi-
tion in polyethylene plants (McAuley and Mac-
Gregor, 1992; Cervantes et al., 2002; Lo and
Ray, 2006) and colored glass product transition
in glass plants (Trier, 1987). In certain circum-
stances, a product transition may take days or
weeks if the reactor is huge and the residence
time of the reactor is large. A reduction of the
transition time, which can be solved as an optimal
control problem, can bring about significant eco-
nomic benefits (Li and Christofides, 2007). In this
work, we will focus on one type of concentration
transition problem in which the grade of the final
product is regulated through the concentration of
a key component that is fed at the entrance of the
reactor. If this key component to be controlled is
not involved in any reactions, the transition pro-
cess is described as a diffusion-convection process.
If it does participate in any reaction, the process
is a diffusion-convection-reaction process. In the
remainder, we focus on the optimal transition
control of a diffusion-convection-reaction process
in which the key component is consumed following
a second-order reaction.

2. MODEL CONSTRUCTION AND
CONTROLLER DESIGN

2.1 Process model and spatial discretization

Consider an isothermal dispersed tubular chem-
ical reactor with simultaneous convection, diffu-
sion and a generic reaction. The evolution of con-
centration is described by the following PDE sub-
ject to the so-called Danckwerts boundary condi-
tions (Danckwerts, 1953):

∂U(z, t)
∂t

= −v
∂U(z, t)

∂z
+ D

∂2U(z, t)
∂z2

+ Ra(U(z, t))

s.t. vU(0−, t) = vU(0+, t)−D
∂U(z, t)

∂z
|z=0+

∂U(z, t)
∂z

|z=L = 0

(1)
where U(0−, t) = u(t) is the input variable,
U(L, t) = y(t) is the output variable and Ra(z, t)
is the reaction term (Ra = −2KU2).

We solve the model of Eq.1 using orthogonal col-
location. By applying the orthogonal collocation
on N finite elements within the spatial domain,
the primary variable U(z, t) can be expressed as

U(z, t) =
N∑

i=1

li(z)U(zi, t) at time t, where li(z)

is the Lagrange interpolation polynomial of (N −
1)th order:

li(z) =
N∏

j=1,j 6=i

z − zj

zi − zj
(2)

which satisfies

li(zj) =
{

0 i 6= j
1 i = j

(3)

Another important property of the Lagrange in-
terpolation polynomials used in the orthogonal
collocation approach is that they are orthogonal
to each other, i.e.

∫ L

0

li(z)lj(z)dz =
{

0 i 6= j
1 i = j

(4)

Therefore, a small number of collocation points
are required to obtain an accurate solution.

Based on the orthogonal collocation scheme, the
collocation elements (zi) and the Lagrange inter-
polation polynomial can be determined a priori
without information from the structure of the
PDE. Therefore, the partial derivatives of U with
respect to the spatial coordinate can be expressed
as follows:

∂U(z, t)
∂z

=
N∑

i=1

U(zi, t)
dli(z)

dz
(5)

∂U2(z, t)
∂z2

=
N∑

i=1

U(zi, t)
d2li(z)

dz2
(6)
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Fig. 2. Spatiotemporal distribution of the con-
centration during transition in the open-loop
system.

Defining the two matrices:

A =
{

Ai,j =
dlj(zi)

dz
; i, j = 1, 2, ..., N

}
(7)

and

B =

{
Bi,j =

dl2j (zi)
dz2

; i, j = 1, 2, ..., N

}
(8)

the original PDE of Eq.1 can be converted to a
set of ODEs:

dU(z2, t)
dt

= −v

N∑

j=1

A2,jU(zj , t) + D

N∑

j=1

B2,jU(zj , t)

+Ra(U(z2, t))

...

dU(zN−1, t)
dt

= −v

N∑

j=1

AN−1,jU(zj , t)

+D

N∑

j=1

BN−1,jU(zj , t) + Ra(U(zN−1, t))

(9)
subject to the following boundary conditions:

vu(t) = vU(z1, t)−D

N∑

j=1

A1,jU(zj , t)

N∑

j=1

AN,jU(zj , t) = 0

(10)

The system of Eqs.9-10 is a DAE of index one
which can be further simplified by incorporating
the boundary conditions into the ordinary differ-
ential equation. First, we rewrite the equations
describing the boundary conditions in the follow-
ing form:

(v −DA1,1)U(z1, t)−DA1,NU(zN , t) =

D

N−2∑

j=2

A1,jU(zj , t) + vu(t)

AN,1U(z1, t) + AN,NU(zN , t) = −
N−2∑

j=2

AN,jU(zj , t)

(11)
and then define the following matrices and vec-
tors:

Ad =
{
Ari,j = Ai+1,j+1; i, j = 1, 2, ..., N − 2

}

Bd =
{
Bri,j = Bi+1,j+1; i, j = 1, 2, ..., N − 2

}

Ab =




A2,1 A2,N

...
...

AN−1,1 AN−1,N




Bb =




B2,1 B2,N

...
...

BN−1,1 BN−1,N




M =

[
v −DA1,1 −DA1,N

AN,1 AN,N

]

V =

[
v

0

]

N =

[
DA1,2 · · · DA1,N−1

−AN,2 · · · −AN,N−1

]

H = [0 1]

x = [U(z2, t) U(z3, t) ... U(zN−1, t)]T

d = [U(z1, t) U(zN , t)]T

f = [Ra(U(z2, t)) Ra(U(z3, t)) ... Ra(U(zN−1, t))]T

(12)

Using the above definitions, we have that:

d = M−1Nx + M−1V u (13)

provided that M is nonsingular. Using the above
notation, Eqs.9-10 can be then written as

ẋ = (−vAd + DBd)x + (−vAb + DBb)d + f(x)

= [(−vAd + DBd) + (−vAb + DBb)M−1N ]x
+f(x) + (−vAb + DBb)M−1V u

(14)
and

y = HM−1Nx + HM−1V u (15)

which is in the standard state-state form of a
nonlinear dynamic process:

ẋ = Acx + Bcu + f(x)

y = Ccx + Dcu
(16)
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where Ac = [(−vAd+DBd)+(−vAb+DBb)M−1N ],
Bc = (−vAb + DBb)M−1V , Cc = HM−1N ,
Dc = HM−1V .

2.2 Optimal control using LQR

The optimal control problem for the nonlinear
ODE system of Eq.16 can be solved using control
vector parametrization or nonlinear programming
of the discretized system. To circumvent the com-
putational complexity, we focus on the linearized
system around the open-loop steady-state. The
linearized system works as a state estimator based
on which the control action is calculated. Because
both the open-loop nonlinear system and the lin-
earized system are stable, the observer gain is set
to be zero for simplicity.

Let x̃ = x − xs, ũ = u − us, and ỹ = y − ys, the
nonlinear system can be written as follows:

˙̃x = Acx̃ + Bcũ + f(x̃ + x̃s)− f(xs)

ỹ = Ccx̃ + Dcũ
(17)

which can be linearized around the steady-state

using the Jacobian matrix Al =
∂f(x)

∂x
|x=xs to

obtain:
˙̃x = (Ac + Al)x̃ + Bcũ

ỹ = Ccx̃ + Dcũ
(18)

The LQR problem is to minimize the following
functional:

min
u(t)

J =
∫ ∞

0

(ỹ2 + ε2ũ2)dt (19)

and the solution is given by the state feedback law:
ũ = −Kx̃, where K = R−1(BT S + GT ), and S
is determined by the Riccati equation (Arnold and
Laub, 1984):

(Ac + Al)T S + S(Ac + Al)

−(SBc + G)R−1(Bc
T S + GT ) + Q = 0

(20)
where Q = Cc

T Cc, G = Cc
T Dc, and R =

Dc
T Dc + ε2.

Typically, the dimension of an approximate state-
space model formulated using orthogonal collo-
cation is substantially smaller than the one ob-
tained by finite difference and can be used for con-
troller design. Moreover, in case a large number
of collocation points are needed, model reduction
techniques can be used to derive a reduced-order
state-space model from the orthogonal collocation
model based on which the controller can be syn-
thesized. Let Φ be a matrix consisting of the first
r eignfunctions, Eq.18 can be converted to the
following form:

˙̃a = Arã + Brũ

ỹ = Crã + Drũ
(21)

Table 1. Parameters used in the simula-
tion of the diffusion-convection-reaction

process.

v 0.2
L 1
D 0.02
N 50
k 0.05

where Ar = ΦT (Ac + Al)Φ, Br = ΦT Bc, and
Cr = CΦ, and Dr = Dc. Therefore, the (N −
2)th state-space model is reduced to an rth one
through the Galerkin projection, which can be
then used for controller design. The solution of
this LQR problem is given by the state feedback
law ũ = −Krã following a similar approach to
the one presented on the basis of the high-order
model.

2.3 Results and discussion

The control problem is to make an optimal transi-
tion of the concentration at the exit of the reactor
from 0.2 to 0.5. The parameters used in the sim-
ulations are listed in Table 1. To determine the
concentration profile within the reactor before and
after transition, the steady state form of Eq. 16 is
solved:

0 = Acxs + Bcus + f(xs)

ys = Ccxs + Dcus

(22)

and the results are shown in Figures 1 and 2. The
collocation elements are not uniformly distributed
along the spatial domain. Instead, they are highly
clustered in the region close to the boundaries.
The nonlinearity of the problem can be easily
verified by checking the steady-state profiles of the
concentration before and after transition, which
are not proportional to each other. A calculation
of the input variable also shows that us increases
from 0.22 to 0.66 in order to make an increase of
ys from 0.2 to 0.5.

The closed-loop spatiotemporal profile of the con-
centration during the transition process solved
using ε2 = 0.01 is shown in Figure 3. One apparent
difference between the open-loop system (Figure
2) and the closed-loop system (Figure 3) is that
the concentration at the inlet of the reactor is
not increasing all the time under optimal control.
Instead, it increases initially and then decreases
after reaching a peak. Because the original steady-
state of both the original system and the lin-
earized system is stable, the difference between
these two states approaches zero as the time ex-
ceeds a certain value, which is shown in Figure 4.
The profiles of the manipulated input and of the
controlled output under optimal control are shown
in Figures 5 and 6. It is seen that the transition
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Fig. 3. Spatiotemporal distribution of the concen-
tration during transition in the closed-loop
system.
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Fig. 4. Deviation of the closed-loop concentration
profile calculated from the linearized model
from the nonlinear system with the same
control action.
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Fig. 5. Optimal trajectory of the manipulated
input based on the high-dimensional state-
space model derived from orthogonal collo-
cation.
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Fig. 6. Optimal trajectory of the controlled output
using optimal control action calculated on
the basis of the high-dimensional state-space
model derived from orthogonal collocation.
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Fig. 7. First five empirical eigenfunctions
for ensemble constructed from the high-
dimensional model.
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reduced-order model (r = 10) from the high-
dimensional model (r = 48) with the same
control action.

time in the closed-loop system is significantly less
than the one in the open-loop system.

In case the dimension of the finite-dimensional
model formulated using the orthogonal colloca-
tion is high in order to accurately describe the
process, a reduced-order model might be derived
using proper orthogonal decomposition techniques
for controller design. The SVD is first applied to
an ensemble of the state variable x (a 48 × 101
matrix) to derive empirical eigenfunctions and it
has been shown that the process can be described
using about 10 empirical eigenfunctions with very
reasonable accuracy. The first five eigenfunctions
corresponding to the five largest eigenvalues λi is
shown in Figure 7. The LQR problem is solved
based on a 10th order model and the control ac-
tion is fed to the high order nonlinear ODE model.
The optimal trajectories of the manipulated input
and controlled output are shown to be very close
to those in which the control action is solved
based on the high-order model (see Figure 8). A
comparison of the spatiotemporal profile of the
concentration based on the control action solved
using the high-order model and the reduced-order
model indicates that there is some small differ-
ence in the region close to the boundary in the
beginning of the transition and in the whole region
during the transition. However, even such a small
difference becomes negligible when the process
reaches steady state (see Figure 9).
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