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Abstract: Model predictive control (MPC) is an advanced process control strategy
that is usually separated into two levels; steady-state target calculation and
dynamic optimization. The existence of uncertainty in model parameters of target
calculation can significantally affect the overall performance of the controller.
Methods have been proposed to deal with model uncertainty using robust opti-
mization. In this study, a new approach using post-optimality analysis is proposed
to study the effect of uncertainty or variation in model parameters on the optimal
solution of linear target calculation. This approach can compute the stability
limits, for simultaneous variation in objective function coefficients or process
limitations, before the optimal target or basis are changed. Copyright c©2007 IFAC
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1. INTRODUCTION

Model predictive control or receding horizon con-
trol is a class of advanced process control strate-
gies. It has been received wide acceptance in
industries since it was proposed by Culter and
Ramaker (1980). Badgwell and Qin (2003) con-
ducted a survey of industrial model predictive
control technology and discussed history, formu-
lation, application, limitation and future perspec-
tives of MPC. Also, Lee and Morari (1999) made
a detailed review of MPC. One main advantage of
MPC is its ability to handle process constraints for
multi-variable system (Palazoglu and Romagnoli,
2005).

In many modern plants, the control hierarchy con-
sists of multiple levels including MPC. MPC can
be divided into a steady-state target calculation
and a dynamic calculation. Target calculation uses
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output feedback information to determine where
the process should go at the steady state, while the
dynamic optimization determines the best way
to drive the process to such targets. Thus, the
purpose of the steady-state target calculation in
MPC is to recalculate the optimal target from
the local optimizer, because process changes and
disturbances can change the optimal operations
faster than local optimizers operate.

As with many other optimization problems, steady-
state target calculation suffers from the existence
of uncertainty in model parameters. This uncer-
tainty can lead to an unstable optimal solution
and poor control performance. Currently, control
stability is one of the main challenges to many
industrial MPC algorithms (Badgwell and Qin,
2003). Mayne et al. (2000) conducted a detailed
review on stability and optimality of constrained
MPC. Rao and Rawlings (1999) proposed an al-
gorithm that utilizes exact penalties to treat the
constrained system in a unified fashion and yields
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a unique steady-state target. Model uncertainty
in linear target calculation was studied by Badg-
well et al. (2000). They showed how robust LP
prevents oscillations in the inputs and outputs
caused by the model mismatch. Rawlings and
Wang (2004a, 2004b) proposed a new robust MPC
method that uses min-max optimization problem
to guarantee stability and offset-free set point
tracking in the presence of model uncertainty.

In this work, we focus on studying post-optimality
analysis of a linear steady-state target calculation.
The main objective is to study the effect of the
uncertainty or changes in economic parameters
on the optimal solution of target calculation. In
addition, we aim to improve the closed-loop sta-
bility of MPC by assessing the required accuracy
of parameter estimates.

2. STEADY-STATE TARGET CALCULATION
AND UNCERTAINTY

Many MPC products perform steady-state target
calculation and dynamic optimization (or receding
horizon regulation ) separately as shown in Fig
1. At each control cycle, the local target calcula-
tion computes the steady-state input, state, and
output targets to be as close as possible to those
targets supplied by the unit optimizer without
violating the model constraints. These results,
from the target calculation, determine where the
system should go at steady state and they are
passed to the dynamic optimizer to compute op-
timal movements toward these new targets.

Mathematically, many target calculations can be
formulated as a single linear optimization problem
that minimizes the difference between the eco-
nomic targets (uo and yo), from unit optimizer,
and future steady-state inputs (us) and outputs
(ys). In this study, we use a linear economic ob-
jective function to present the target calculation
problem as follows:

P = dT us + eT ys (1)

and linear input and output inequality con-
straints:

ul ≤ us ≤ uh (2)

yl ≤ ys ≤ yh (3)

and include the linear model or equality relation
between steady-state inputs and outputs in the
existence of the model bias (β):

∆y = G∆u + β (4)

where ∆u = us−uo, ∆y = ys−yo, G ∈ <m×n is
a model gain matrix, n is a number of inputs, m

Fig. 1. Typical architecture of MPC controller.

is a number of outputs, d ∈ <n and e ∈ <m are
economic objective coefficients, l and h represent
minimum and maximum bounds, respectively.

In this optimization problem, the decision vari-
ables are the steady-state inputs (us) and outputs
(ys) and it can be expressed in a general LP form:

min dT us + eT ys

s.t. −Gus + ys = −Guo + yo + β (5)

Au us ≤ bu

Ay ys ≤ by

where Au ∈ <2n×n and bu ∈ <2n such that
Au = [I − I]T and bu = [uh − ul]T . Similar
notation and relations are used for the outputs.
The main feature of this linear optimization prob-
lem, is that the optimal solution lies at the vertex
of n+m constraint boundaries and any variation
in the vectors d, e, b and matrix G can lead to
new optimal targets at each control execution or
make the current target infeasible. Thus, unstable
optimal solution may cause cycling in the closed-
loop system and lead to poor overall performance
of the MPC (Badgwell et al., 2000). In this work,
we study the effect of simultaneous variation in
vectors d and e or in vector b on the optimal
solution or basis (active constraints) using a pro-
posed method of post-optimality analysis in linear
problems.

3. POST-OPTIMALITY ANALYSIS OF LP

Consider this LP problem:

max {cT x : Ax ≤ b, x ≥ 0} (6)

where x = [us ys]T is the decision variable vec-
tor, c = [−d − e]T , b = [bu by]T , and A =
[Au Ay]T . Existence of uncertainty in problem
(6), can impact the optimality of the solution.
Therefore, consideration of uncertainty in opti-
mization problems becomes of great importance
to the researchers. There are two main approaches
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to deal with the uncertainty in model parameters;
optimization under uncertainty (Sahinidis, 2004)
and post-optimality analysis which is our interest
here. Post-optimality analysis studies the effect of
uncertainty or variation in model parameters on
the obtained optimal solution or basis. It has re-
ceived little attention in the MPC literature; how-
ever, it can provide valuable information about
a particular control application and can answer
many crucial questions such as:

• How the optimal target is affected by indi-
vidual or simultaneous change(s) in problem
parameters?

• What are the perturbation limits that do not
change the optimality of the solution?

• What are the sensitive constraints that need
further monitoring?

• What are the sensitive parameters that need
accurate estimation?

All of these questions can be answered by com-
puting the stability limits of the parameters.

The terms “post-optimality” , “sensitivity”, and
“stability” analysis, are generally used to study
the behavior of an optimal solution with respect to
changes in problem’s parameters. Post-optimality
analysis is a general term for understanding the
effect of perturbations in problem parameters
on the optimal solution; whereas, sensitivity and
stability analysis are more specific depending on
the purpose of analysis.

3.1 Sensitivity and stability analysis

For problem (6), sensitivity analysis investigates
how the optimal primal solution, x∗ , the dual
solution, λ∗, and the optimal objective value, P ∗

change with small perturbations in problem pa-
rameters. Examples are ∂x∗

∂b and ∂P∗
∂c (Gal, 1984).

Thus, the term “sensitivity information” is often
used to mean parameter derivatives where there
is no change in the optimal basis (Fiacco, 1983).
Stability analysis is defined as a study of how
much we can perturb the parameters of the prob-
lem without changing the optimal solution or the
optimal basis (Leontev et al., 1995). For example,
stability analysis of linear problems usually refers
to determining certain bounds, ε, Λ, and/or β in
the problem:

max {(c+ε)T x : (A+Λ)x ≤ (b+β), x ≥ 0}
such that the optimal basis of the original problem
remains unchanged (Kozeratskaya et al., 1984).

3.2 Proposed approach for stability analysis of LP

During the last few decades, many stability ap-
proaches have been proposed, for variation in vec-

tors b, c, and matrix A of LP (Gal and Greenberg,
1997). To date there is no single approach that
dominates. In contrast to other approaches, the
tolerance approach (Wendell, 1985; Wondolowski,
1991; Filippi, 2005) leads to easy-to-use results
and considers simultaneous and independent vari-
ation in the model parameters. The proposed ap-
proach is a modified tolerance approach depends
on the active constraints rather than optimal basis
in analyzing the stability limits. It computes a
better approximation of the stability region for
simultaneous variation in vector b or c. In addi-
tion, it is more computationally efficent for large
LP problems.

To demonstrate this approach, consider this max-
imization problem:

Max {cT x : Ax ≤ b, x ≥ 0, x ∈ Rn } (7)

that has a unique optimal solution, x∗, such
that cT x∗ = bT λ. To define the entire stability
region (cone) for variations in objective function
coefficients (i.e. vector c), duality information or
Lagrange multipliers, λ, are used:

∇b P∗ = λ = cT A−1
A (8)

where AA ⊂ A contains the coefficients of the
active constraints. The Lagrange multiplier, λi,
represents the increase in optimal value, for maxi-
mization problem, when the associated coefficient
in vector b is increased by one unit. By introduc-
ing perturbations vector, 4cT ,

λ
′
= (cT +4cT )A−1

A (9)

Using the non-negativity condition on the optimal
solution, there is no change in optimal solution if
λ
′

> 0; and by substituting and rearranging, we
get:

λ +4cT A−1
A > 0

−4cT A−1
A < λ (10)

This inequality relation presents the stability cone
with respect to 4c. The solution remains opti-
mal for any perturbation satisfy these inequality
equations. To obtain easy-to-use information, a
hyperbox is built inside the stability cone using:

τj =
λj∑n

i=1 |A−1
Aij
| (11)

where i = 1, .., n. To find the largest hyperbox, let

R = sign(A−1
Aij

)× τ (12)

the stability region for each coefficient in vector c
under simultaneous perturbations is obtained by:

(max
j

Rij : Rij < 0) < 4ci < (min
j

Rij : Rij > 0)(13)
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Ru
i < 4ci < Rl

i

The above relation is the first stage of this analysis
and it leads to the upper and the lower limit for
each ci. In addition, it is useful to understand the
relation between vectors c and τ . Based on this
relation, we can sort the matrix A−1

A into three
matrices as follow:

• S ∈ Rn×n: contains coefficients of A−1
A used

in the analysis of first step
• P ∈ Rn×n: contains unused positive coeffi-

cients of A−1
A , P = 0.5[(A−1

A −S)+|A−1
A −S|]

• N ∈ Rn×n: contains unused negative coeffi-
cients of A−1

A , N = 0.5[(A−1
A −S)−|A−1

A −S|]
letting

l = [Rl
1, R

l
2, ...., R

l
n], u=[ Ru

1 , Ru
2 , ...., Ru

n], β =
Pu, and α = Nl,

The obtained stability limit can be expanded
using:

τnew
j =

λj − βj − αj∑n
i=1 |Sij | (14)

Then to compute an enlarged stability region,
τnew, Eq. (12) and Eq. (13) are used where
τnew ≥ τ . The computational algorithm of this
approach is shown in the appendix.

For perturbations in vector b, the dual problem
is used:

min {λT b : λT A ≥ cT , λ ≥ 0}
and a similar analysis is employed by using

−4bT (AT
A)−1 < η (15)

instead of Eq. (10), where the vector η consists of
the basic optimal solution, xB and non-zero slack
variables, s, such that η = [xB s].

3.3 Stability analysis of linear target calculation

The previous section describes a computational
method for stability limits under simultaneous
variation in vector c or b. In linear target cal-
culations, stability analysis of the objective coeffi-
cients, biases, and process limitations can improve
the robustness of the optimal target and avoid
cycling among optimal targets.

In design of the objective function for target
calculation, the objective coefficients are usually
selected based on economic information or certain
priorities for the process variables. Proper choices
for these coefficients can be made using stability
analysis to enhance the controller robustness. For
example, coefficients with narrow stability limits
are considered as sensitive coefficients which need
more consideration than other coefficients.

Fig. 2. Feasible region of Example 1.

In closed-loop control, bias update that is used
to compensate for mismatch between the model
and the process, can lead to an infeasible optimal
target or cycling, which affects the controller
performance (as in Example 1). The proposed
stability analysis can determine the bias limits
where the obtained target is feasible and robust.
Thus, biases within the obtained stability limits
guarantee that the optimal target is feasible in the
target calculation. Moreover, performing stability
analysis for process limits (i.e. vector b) under
simultaneous variation may explore the flexibility
and sensitivity of the parameters.

4. EXAMPLES

Example 1: Consider this simple single-input and
single-output first order system, with no time
delay and a time constant of 10 for both true plant
and model as follows:

gp =
−2.0

10s + 1
, gm =

−0.5
10s + 1

(16)

The designed linear target calculation of this
system is given by:

min 2us + 3ys

s.t. 0.5 us + ys = −0.5uo + yo + β

−1 ≤ us ≤ 1
−1 ≤ ys ≤ 1

where uo = 0 and yo = 1. Fig. 2 shows the feasible
solutions when β = 0. The nominal optimal
solution is (0,1) but a small variation in vector c to
c=[1.667, 3.333] leads to new optimal solution like
(1,0.5) and changes the active set of constraints.
Therefore, determining the stability limits for
model parameters is important before using them
in the controller. Using the proposed method,
the stability limits, before the optimal solution
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Fig. 3. Cycling in the steady-state target calcula-
tion of Example 1.

loses its optimality, for simultaneous variation in
objective function coefficients are:

−0.333 < ∆c1 < ∞
−∞ < ∆c2 < 0.333

These stability limits for simultaneous variations,
help in selecting parameters values in controller
design especially for large control problems. For
example, the variation in the current objective
coefficients should be within the above limits,
and any variation at or beyond these limits may
lead to situations where the optimal target starts
cycling between two solutions (0,1) and (1,0.5)
and the MPC loses its stability. Now, consider the
controller with only steady-state target calcula-
tion, in the closed-loop system with no external
disturbances and long sample time between each
calculation to reach steady state condition. Due to
mismatch between the model and the real process,
this closed-loop target calculation cycles between
two targets (1,1) and (-1,-1) as shown in Fig 3.
Now, consider using MPC controller, dynamic op-
timization is added, with yset = 0.2. Fig 4 shows
how cycling in target calculation leads to poor
control performance. Thus, in each target calcu-
lation, there are limits for the model mismatch
(bias). Beyond these limits optimal target is either
cycling or infeasible and both problems lead to
poor performance of the MPC. For Example 1,
the computed bias limit is:

−0.5 ≤ ∆β ≤ 0.5

This issue become more important in designing
multi-variable controllers where there are many
equality constraints (gain equations) that need to
be satisfied. Determination of these limits before
the solution become infeasible can assess the re-
quired accuracy of model estimate and the flexi-
bility of the model (i.e., variation or modification
in vector b, as in Example 2).

Example 2: Consider a target calculation problem
with two inputs and two outputs:
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0.3
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Time
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Fig. 4. MPC controller for Example 1, (yset =

0.2, p = 20,m = 10)

min −0.2u1 − 0.1u2 + y1 + 1.5y2

s.t.

2u1 + 3u2 − y1 = β1

−u1 − 2u2 − y2 = β2

−1 ≤ u1 ≤ 1
−1 ≤ u2 ≤ 1

−0.5 ≤ y1 ≤ 0.5
−0.5 ≤ y2 ≤ 0.5

At β = 0, the optimal solution is x∗ =
[−1.0 0.75 0.25 − 0.5]T and λ∗ = [1.00 1.45 0.35
0.05]T for equality and active inequality con-
straints, respectively. To maintain this solution
as an optimal target, simultaneous variation in
objective coefficient should be within:

−0.2278 < ∆c1 < ∞
−2.375 < ∆c2 < 0.0167
−0.227 < ∆c3 < 0.0167
−0.0167 < ∆c4 < ∞

In addition, for simultaneous changes in process
limits and the bias, the optimal basis remains un-
changed for changes within these stability limits:

−0.0455 < ∆β1 < 0.0556
−0.0455 < ∆β2 < 0.0556
−1.9545 < ∆uh

1

−0.0455 < ∆ul
1 < 0.0556

−0.1768 < ∆uh
2

−1.6717 < ∆ul
2

−0.0455 < ∆yh
1

−0.500 < ∆yl
1

−0.9444 < ∆yh
2

−0.0556 < ∆yl
2 < 0.0455

These limits help in determining when the dual-
ity information is still valid and any variations
beyond these limits, may change the active con-
straints and the obtained optimal target in the
steady-state target calculation.
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5. CONCLUSION

Uncertainty or variation in model parameters can
affect the stability of the controller and may
lead to cycling. In this study, a new approach is
proposed to perform post-optimality analysis for
linear steady-state target calculation of MPC. It
studies the effect of uncertainty or variation on the
optimal target and basis and helps to assess the
accuracy of parameters estimate. The proposed
approach can compute the allowable limits for si-
multaneous variation in objective function coeffi-
cients and process limitations of target calculation
model before the optimal target lose its optimality
or feasibility. In addition, two simple examples
are used to explain the effect of variation and
to present the obtained stability limits before the
controller starts cycling or has infeasible target.
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Appendix

Algorithm of the proposed approach for
perturbations in vector c

Inputs: active rows of matrix A, and the vector
of Lagrange multipliers, λ.
Outputs: stability limits for each coefficient,
Ru

i < 4ci < Rl
i.

for j=1:m
compute τj = λj∑n

i=1
|A−1

Aij
|

end
find R = sign(A−1

Aij
)× τ

let S = 0 where S ∈ Rn×n

for i=1:n
find Ru

i = (maxj Rij : Rij < 0)
Rl

i = (minj Rij : Rij > 0)
let Sij = A−1

Aij
at Rl

i = Rij or Ru
i = Rij

end
compute P = 0.5[(A−1

A − S) + |A−1
A − S|]

N = 0.5[(A−1
A − S)− |A−1

A − S|]
let l = [Rl

1, R
l
2, ...., R

l
n], u=[ Ru

1 , Ru
2 , ...., Ru

n],
β = Pu, and α = Nl
for j=1:m
compute τnew

j = λj−βj−αj∑n

i=1
|Sij |

end
find R= sign(A−1

Aij
)× τnew

for i = 1 : n
find Ru

i = (maxj Rij : Rij < 0)
Rl

i = (minj Rij : Rij > 0)
end
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