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Abstract: In the framework of process optimization, measurements can be used to
compensate for the effect of uncertainty. The method studied in this paper combines
a process model and measurements to iteratively improve theoperation of continuous
processes. Unlike many existing real-time optimization schemes, the measurements are
not used to update the process model, but to adapt the constraints in the optimization
problem. Upon convergence, all the constraints are respected even in the presence of large
model mismatch. Moreover, it is shown that constraints adaptation can handle changes in
the set of active constraints. The approach is illustrated,via numerical simulation, for the
optimization of a continuous stirred-tank reactor. Copyright c©2007 IFAC.
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1. INTRODUCTION

In the presence of uncertainty, the open-loop im-
plementation of off-line calculated optimal inputs or
setpoints leads to suboptimal operation. Worse, the
satisfaction of safety constraints and product quality
specifications can no longer be guaranteed unless a
“conservative” strategy is adopted, i.e., a strategy that
ensures constraint satisfaction even in the worst-case
scenario (Mönnigmann and Marquardt, 2003; Kanget
al., 2004). Unfortunately, this conservatism is detri-
mental to the optimization objective.

Several measurement-based optimization (MBO)
methods have been proposed to deal with uncertainty
in the form of model mismatch or process distur-
bances. For continuous processes, real-time optimiza-
tion (RTO) attempts to update the operating condi-
tions (e.g., the setpoints), so as to optimize process
performance (e.g., its economic productivity). Many
successful industrial applications have been reported
(Young, 2006).

Typical RTO schemes use measurements for model
refinement (Marlin and Hrymak, 1997; Roberts and
Williams, 1981), thus implying an iteration between
identification and optimization (two-step approach).
However, the optimal inputs often fail to provide suf-
ficient excitation for estimating the uncertain parame-
ters accurately. And when sufficient excitation is pro-
vided, the resulting solution may no longer be optimal
due to the conflicting objectives of parameter estima-
tion and optimization.

Fixed-model methods utilize both the available mea-
surements and a (possibly inaccurate) process model
to guide the iterative scheme towards an optimal op-
erating point. Analogous to two-step methods, the
available process model is embedded within an NLP
problem that is solved repeatedly. But instead of re-
fining the process model from one RTO iteration to
the next, the measurements are used to directly update
the constraints as well as the cost function in such a
way that they approximate the actual cost and con-
straint functions. Theinternal model controller (IMC)

Preprints Vol.1, June 6-8, 2007, Cancún, Mexico

45



schemeis one such fixed-model method, wherein the
constraint functions are simply offsetted based on their
measurements (Desbiens and Shook, 2003). More re-
cently, additional correction terms have been proposed
so that, not only the constraint values predicted by the
model be equal to those of the actual process con-
straints, but also their gradients as well as the gradient
of the cost function (Gao and Engell, 2005). How-
ever, calculating these terms requires that the cost and
constraint gradients be estimated from the available
measurements.

The focus in this paper is on fixed-model RTO meth-
ods, with emphasis on the IMC scheme (Desbiens and
Shook, 2003), which we shall refer to asconstraint-
adaptation schemethroughout. The paper undertakes
a novel study of various aspects of these adaptation
schemes. It is organized as follows. The optimization
problem is formulated in§ 2. The iterative constraint-
adaptation scheme is presented in§ 3 and illustrated
by a continuous stirred-tank reactor example in§ 4.
Finally, § 5 concludes the paper.

2. PROBLEM FORMULATION

The usual objective in RTO is the minimization or
maximization of some steady-state operating perfor-
mance of the process (e.g., minimization of the oper-
ating cost or maximization of the product rate), while
satisfying a number of constraints (e.g., limits on pro-
cess variables or product specifications), based on a
steady-state model of the process. The optimization
calculations execute at a given period, and proceed by
solving an NLP of the following form:

min
p,x

J(p,x) (1)

s.t. h(p,x) = 0

z(p,x) ≤ zmax

pmin ≤ p ≤ pmax,

whereJ is a scalar cost function to be minimized,p ∈
IRnp the input (or decision) variables andx ∈ IRnx the
state variables. In this formulation,hi, i = 1, . . . , nx,
stands for the steady-state model of the process,zi,
i = 1, . . . , nz, is a set of constrained quantities, and
pmin, pmax denote bounds on the input variables (these
bounds are considered separately since they are not
affected by uncertainty and do not require adaptation).

The necessary conditions of optimality (NCO) for
Problem (1) read:

µT(z − zmax) = 0, µ ≥ 0 (2)

νT
+(p − pmax) = 0, ν+ ≥ 0 (3)

νT
−

(p− pmin) = 0, ν− ≤ 0 (4)

Lp = 0, Lx = 0, Lλ = 0, (5)

whereλ ∈ IRnx , µ ∈ IRnz , ν+, ν− ∈ IRnp are
Lagrange multipliers, andL stands for the Lagrangian
definedL = J+λT

h+µT(z−zmax)+νT
+(p−pmax)+

min J(pk,xk)
pk, xk

s.t. h(pk, xk) = 0

εk + z(pk ,xk) ≤ zmax

pmin ≤ pk ≤ pmax
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Fig. 1. Iterative constraint-adaptation scheme for static
optimization.

νT
−

(p− pmin). Note that the NCO have two parts: the
constraint part (2-4), and the sensitivity part (5).

3. CONSTRAINT-ADAPTATION SCHEME

The constraint-adaptation scheme is presented in Fig-
ure 1. At thekth RTO cycle (or iteration), the NLP
problem (1) is solved forp∗

k and x∗

k based on the
nominal modelh(pk,xk) = 0. Due to model mis-
match, the predicted values of the constrained vari-
ables,z(p∗

k,x∗

k), do not quite match the measured
valueszmeas(p

∗

k). To account for this difference, the
corresponding constraints are adapted from cycle to
cycle, by using the additive correction termsεk. Since
the model represents steady-state behavior, great care
must be taken that the process has reached steady state
before a new input update is made. In other words, the
RTO cycle period must be longer than the dynamics
of the process.

3.1 Principles of Constraints Adaptation

The constraints in the optimization problem are
adapted between successive RTO cycles to track the
constraints measured in the real process. This is done
by adapting the additive constraint factorsεk as fol-
lows:

εk+1 = (I−B)εk +B(zmeas(p
∗

k)− z(p∗

k,x∗

k)),
(6)

and then considering the modified constraints

εk + z(pk,xk) ≤ zmax, (7)

in the NLP Problem (1). Observe thatεk+1 ∈ IRnz

is the filtered difference between the measurements
zmeas(p

∗

k) and the model predictionz(p∗

k,x∗

k), both
in the previous iteration;B ∈ IRnz×nz is a diagonal
matrix of filter parametersbi with i = 1, . . . , nz. In
particular, each constraint can be filtered individually
by setting0 ≤ bi ≤ 1: no adaptation is performed
whenbi = 0, whereas no filtering is used whenbi = 1.

An important difference with Desbiens and Shook
(2003) is that the exponential filtering (6) is performed
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on the constraint factors rather than on the inputs. The
rationale behind this choice is that it permits to treat
each constraint individually. Note also that only the
constrained quantitiesz are considered for adaptation
here, and not the model constraintsh. Hence, only
the measurements of the constrained quantitiesz are
required at each RTO cycle.

3.2 Properties of Constraint Adapation

Meeting the Constraints. It is important to ensure
that the iterative scheme converges towards the con-
straints of the real process.

Theorem 1.If the constraint-adaptation scheme con-
verges, then the constraints for the real process are
respected.

Proof Upon convergence, i.e., fork → ∞, (6) gives
ε∞ = zmeas(p

∗

∞
) − z(p∗

∞
,x∗

∞
). Inserting this equa-

tion into (7) leads to zmeas(p
∗

∞
) ≤ zmax. 2

It should be noted that the adapatation scheme may
converge by following an infeasible path, i.e., with
violation of the constraints. This highlights the inter-
est of devising an iterative scheme such that, when
starting with initial back-offs from the constraints, the
iterations follow a feasible path.

The convergence of the constraint-adaptation scheme
can be improved by reducing the performance, i.e,
by decreasing the filter parametersbi. Theoretical
conditions under which this scheme converges are not
studied in this paper, and will be the topic of future
research.

Evaluation of the NCO. With the constraint-
adaptation scheme,z(p,x) in (1)-(5) specializes to
εk + z(pk,xk). Upon convergence, and noting that
ε∞ + z(p∗

∞
,x∗

∞
) = zmeas(p

∗

∞
), the NCO (2)-(5) can

be rewritten as:

µT(zmeas(p
∗

∞
) − zmax) = 0, µ ≥ 0 (8)

νT
+(p∗

∞
− pmax) = 0, ν+ ≥ 0 (9)

νT
−

(p∗

∞
− pmin) = 0, ν− ≤ 0 (10)

Lp|p∗

∞

= 0, Lx|p∗

∞

= 0, Lλ|p∗

∞

= 0 (11)

Hence, the constraint part of the NCO (8-10) is de-
termined accurately from the measurements, while
the sensitivity part (11) is evaluated using the model,
which can be a poor approximation due to model mis-
match.

Changing Set of Active Constraints.Much insight
on how the method works, and why it can handle
changes in the active set, can be gained by visualizing
the situation for the simplified problem:

min
p

J(p) (12)

s.t. pmin ≤ p, ε + z(p) ≤ zmax.

In this example, the inputp has two componentsp1

and p2, and there is a single constrained quantityz
to be adapted using the constraint factorε. Figure
2a presents the constrained quantity calculated by the
model,z = zmax, and the location of the constrained
quantity for the real process,zmeas= zmax. The shad-
owed area corresponds to the feasible region of the
optimization problem using the model withε = 0.
Point A represents the optimum calculated by the
model without constraint adaptation, where the active
constraints arep2,min andzmax. However, the optimum
of the real process is at point B, where the active con-
straints arep1,min andp2,min. In this example, depend-
ing on the gradient of the costJp calculated with the
model, the adaptation may converge to different sets of
active constraints. Figure 2b presents the case where,
upon adaptation ofz, the operation converges to the
true optimum B. The shadowed area corresponds to
the feasible region of the optimization problem given
by the model withε = εB, whereεB is evaluated at
point B. Figure 2c presents the case where, because
of the model mismatch in the evaluation ofJp, the
adaptation converges to an incorrect set of active con-
straints at point C. The shadowed area corresponds to
the feasible region given by the model withε = εC ,
evaluated at point C. The active constraints in this case
arep1,min andzmax.

More generally, how close to the true optimum the
iterative process gets, and whether or not the correct
active constraint set is found, depends upon the error
in the estimation of the sensitivitiesLp andLx in (11).

4. ILLUSTRATIVE EXAMPLE

The example presented in Srinivasanet al. (2006) is
considered to illustrate the constraint-adaptation ap-
proach. It consists of an isothermal continuous stirred-
tank reactor with two reactions:

A + B −→ C, 2 B −→ D. (13)

The desired product isC, while D is undesired. The
reactor is fed by two streams with the flow ratesFA

and FB and the corresponding inlet concentrations
cAin

andcBin
.

4.1 Model Equations and Parameters

The steady-state model results from material balance
equations:

FAcAin
− (FA + FB)cA − r1V =0 (14)

FBcBin
− (FA + FB)cB − r1V − 2r2V =0 (15)

−(FA + FB)cC + r1V =0, (16)

with
r1 = k1cAcB, r2 = k2c

2
B. (17)
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Fig. 2. Sketch of the constraint-adaptation scheme in the 2-D case. Thick solid lines: constraint bounds for the
real process. Thin solid lines: constraint bounds evaluated using the model. Thick dashed lines: isoline of
J corresponding to the true optimum. Thin dashed lines: isolines ofJ evaluated using the model. Arrows:
negative of the cost gradient,−Jp. a) No constraint adaptation. Point A: Nominal model optimum; Point
B: Real process optimum. b) Constraint adaptation and convergence to the true optimum B. c) Constraint
adaptation and convergence to the suboptimal solution C.

The heat produced by the chemical reactions is:

qr = (−∆H1)r1V + (−∆H2)r2V. (18)

Variables and parameters:cX : concentration of
speciesX , V : volume,ri: rate of reactioni, ki: kinetic
coefficient of reactioni, ∆Hi: enthalpy of reactioni.

Table 1. Nominal model parameters and
operating bounds

k1,nom 1.5 l
mol h k2 0.014 l

mol h
cAin

2 mol
l cBin

1.5 mol
l

∆H1 −7 × 104 J
mol ∆H2 −105 J

mol
V 500 l qr,max 106 J

h
Fmax 22 l

h

The numerical values of the parameters are given in
Table 1. Since, in this work, the reality is simulated
by varyingk1 in the model, the nominal value ofk1

is denoted byk1,nom. Note that this value is different
from the one used in Srinivasanet al. (2006).

4.2 Optimization Problem

The cost function is chosen as the amount of product
C, (FA +FB)cC , multiplied by the yield factor(FA +
FB)cC/FAcAin

. Upper bounds are defined for the
amount of heat produced by the reactions and the total
flow (Table 1). The optimization can be formulated
mathematically as:

max
FA,FB

J =
(FA + FB)2c2

C

FAcAin

(19)

s.t. model equations (14)-(18)

FA + FB ≤ Fmax

qr ≤ qr,max.

The optimal feed rates, the values of the constrained
quantities, and the cost function fork1 = 0.3, 0.75
and 1.5 l

mol h are given in Table 2. Notice that the set

of active constraints in the optimal solution changes
with the value ofk1.

Table 2. Optimal solutions for various val-
ues of the parameterk1

k1 F ∗

A
F ∗

B
qr

qr,max
FA+FB

Fmax
Cost

0.3 8.21 13.79 0.887 1.000 8.05
0.75 8.17 13.83 1.000 1.000 11.16
1.5 7.61 13.05 1.000 0.940 12.30

4.3 Iterative Constraints Adaptation

Since the constraint on(FA + FB) is not affected
by the uncertainty, only the constraint onqr requires
adaptation.

4.3.1. Accuracy of the Constraint-Adaptation Scheme
In this subsection, the accuracy of the constraint-

adaptation scheme upon convergence is investigated
in the absence of measurement noise and process
disturbances (ideal case).

The scaled constrained quantitiesqr/qr,maxand(FA+
FB)/Fmax are represented in Figure 3 for values of
k1 (simulated reality) varying in the range 0.3 to 1.5

l
mol h. Note that the constrained quantities obtained
with the the constraint-adaptation scheme (thick lines)
follow closely those of the true optimal solution (thin
lines). However, although the proposed scheme guar-
antees feasible operation upon convergence irrespec-
tive of the value ofk1, it fails to detect the correct
active set in the vicinity of the operating points where
the active set changes (i.e.,k1 ≈ 0.65 andk1 ≈ 0.8).
As discussed in subsection 3.2, this deficiency results
from the error introduced by the nominal model in the
evaluation of the sensitivities with respect toFA and
FB of both the cost function and the state constraints.

Figure 4 shows the performance loss

∆J :=
Jtrue− J(p∗

∞
,x∗

∞
)

Jtrue
,
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Fig. 3. Optimal values of the constrained quanti-
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for k1,nom = 1.5 l

mol h. Thick lines: Constraint-
adaptation solution; Thin lines: True optimal so-
lution.
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where Jtrue denotes the true optimal cost, and
J(p∗

∞
,x∗

∞
) the optimal cost obtained upon conver-

gence of the constraint-adaptation scheme. Clearly,
∆J is equal to zero fork1 = 1.5, for there is no
model mismatch in this case. Interestingly enough,
∆J is also equal to zero when the two constraints are
active and the adaptation scheme provides the correct
active set; this situation occurs fork1 in the range
0.68 < k1 < 0.79 (see Figure 3). Overall, the per-
formance loss remains lower than0.6% for any value
of k1 in the range 0.3 to 1.5 l

mol h, and is even lower
(less than0.2%) with k1,nom chosen as0.3 and0.75

l
mol h in the nominal model. These results demonstrate
that the performance loss remains limited, despite the
error made in the detection of the active set for some
scenarios.
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Fig. 5. Evolution of the constraint factorε. Thick line:
Case 1; Thin line: Case 2.

4.3.2. Convergence of the Constraint-Adaptation
Scheme In this subsection, we take a closer look
at the convergence properties of the iterative scheme.
Two scenarios are considered, which correspond to
different sets of active constraints at the optimum.
In either scenario, the nominal model is chosen with
k1,nom = 1.5 l

mol h. Note also that the adaptation is
started with a highly conservative initial constraint
factor ε0 = 1.5 × 105 J

h, and the filter parameter is
taken asb = 1 (no filtering).

To depart from the ideal case of the previous subsec-
tion, Gaussian noise with standard deviation of 1800J

h
is added to the measurements ofqr. In response to this,
a back-off is defined to ensure that the heat production
constraints is satisfied, i.e.,qr,max = 9.9 × 105 J

h .

Case 1) Simulated Reality withk1 = 0.75. The
evolution of the constraint factorε with the RTO cycle
is shown in Figure 5 (thick line). A negative value of
ε indicates that the heat production is overestimated
by the model, which is consistent with the values of
k1 chosen for the simulated reality. Note also that
the convergence is very fast in this case, as the re-
gion where the adaptation is within the noise level is
reached after two RTO cycles only. The corresponding
constrained quantitiesF = FA + FB and qr are
represented in Figure 6. Observe that only the heat
production constraint is active in this scenario, and
that the chosen back-off ensures that the maximum
value of 106 J

h does not get exceeded despite mea-
surement noise. On the other hand, the feed rate con-
straint remains inactive, although its value gets close
to the maximum feed rate. Finally, the evolution of
the cost functionJ is shown in Figure 7 (thick line).
The converged cost value is close to11, i.e., within a
few percent of the ideal cost given in Table 2, despite
the performance loss induced by backing-off the heat
production constraint.

Case 2) Simulated Reality withk1 = 0.3. The evo-
lution of the constraint factorε, the constrained quan-
titiesF = FA +FB andqr, and the objective function
J is shown as thin lines in Figures 5, 6 and 7, respec-
tively. It is seen from Figure 5 that the constraint factor
is larger in this scenario than in the previous one, as
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the nominal model is even farther from the simulated
reality. Moreover, Figure 6 shows that only the feed
rate constraint gets active, while the heat production
remains inactive. Hence, the optimal inputs remain un-
affected by measurement noise. It takes a single RTO
cycle for the constraint-adaptation scheme to detect
the correct active set in this case. Finally, it is seen
from Figure 7 that the converged cost value of about
8 is very close to the ideal cost reported in Table 2, in
spite of the large model mismatch.

5. CONCLUSIONS

In this paper, a constraint-adaptation scheme has been
applied to the context of RTO. The input variables are
updated at each RTO cycle, based on a (nominal) pro-
cess model, by solving a constrained NLP problem.
Only the state constraints of the optimization problem
are adapted, based on the measured constrained quan-
tities. Constraint satisfaction is guaranteed upon con-
vergence. When the optimal solution lies on the con-
straints of the optimization problem, the constraint-
adaptation scheme pushes the operation towards the
constraints of the real process. Thus, the method is
especially well suited to those optimization problems
where meeting the active constraints has a dominant
impact on the cost. In those cases, near optimality can

be obtained within a small number of iterations, even
in the presence of (considerable) model mismatch.

A major advantage with respect to many existing RTO
methods is that the nominal model does not require
refinement, and thus the conflict between the parame-
ter estimation and optimization objectives is avoided.
This feature, together with constraint satisfaction and
fast convergence, makes the constraint-adaptation ap-
proach much appealing for RTO applications.

This paper has demonstrated that the constraint-
adaptation approach has the ability to capture changes
in the set of active constraints. The NCO-tracking
scheme (Srinivasanet al., 2003) uses measurements
and feedback control to enforce the NCO for the true
process, but it relies on the assumption that the ac-
tive set does not change with uncertainty. Hence, both
approaches could complement each other nicely, and
finding a proper way of doing so will be the topic of
future work.
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