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Abstract: There exist many algorithms for control performance monitoring. There
are also many algorithms available for process monitoring. There are, however,
few methods available for synthesis of various monitoring technologies to form a
diagnosing system for optimal decision making. This paper is concerned with estab-
lishing and demonstrating a novel probabilistic diagnostic framework for control
loop monitoring. The new framework possesses a number of desired properties in-
cluding, for example, probabilistic diagnosing procedure, flexibility in synthesizing
different monitoring technologies, robustness in the presence of missing data or
missing variables, ease of expansion or shrinking of the diagnosing system, ability
to incorporate a priori process knowledge, and capability for decision making.
As the backbone of the proposed framework, the emerging Bayesian methods are
introduced and shown to be the appropriate tools. Several representative control
loop diagnostic problems are formulated under the Bayesian framework and their
solutions are demonstrated through examples. The experiences and challenges
learned from industrial applications of Bayesian methods are summarized and
some of future research directions are discussed. Copyright c©2007 IFAC

Keywords: Bayesian methods, performance assessment, diagnosis, control
monitoring, process monitoring, Bayesian network

1. INTRODUCTION

Established in later 1980s by [Harris, 1989], the
research on control loop monitoring has been and
remains to be one of the most active research areas
in process control community. A number of algo-
rithms have been developed and many successful
applications have been reported; see reviews by
[Qin, 1998; Huang and Shah, 1999; Harris et al.,
1999; Jelali, 2006]. It is estimated that several
hundreds of papers have published in this or re-
lated direction [Horch and Dumont, 2003]. On the
practical side, Eastman Kodak recently reported
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regular loop monitoring on over 14000 PID loops.
Some commercial control performance assessment
software including multivariate performance as-
sessment has also been available in the market.

While the significant progress is being made in
control performance monitoring, other related de-
velopments also go hand in hand including, sen-
sor monitoring [Jelali, 2006], actuator monitoring
[Horch, 2000], oscillation detection [Thornhill and
Hagglund, 1997; Horch, 2000], model validation
[Huang et al., 2003], model predictive control
monitoring [Kesavan and Lee, 1997; Schafer and
Cinar, 2004], nonlinearity detection [Choudhury
et al., 2004] etc. Most of monitoring methods
target specific problem in a control loop and suc-

Preprints Vol.1, June 6-8, 2007, Cancún, Mexico

29



cessful case studies have been reported. However,
the synthesis of these monitoring technologies has
rarely been addressed. The common practice was
that one monitoring algorithm was developed for
specific problem and then tested with the targeted
problem. Obviously, different problems can result
in similar symptoms and may affect more than one
monitoring algorithms. There is a need to consider
various monitoring problems simultaneously in a
systematic manner.

There are a number of challenging issues in
synthesizing monitoring problems: 1) While the
source of the problem may be unique (e.g. change
of disturbance dynamics), its symptoms can be
similar to that resulted from different problem
sources (e.g. change of the plant model). The
model validation algorithm that is designed to de-
tect plant-model mismatch can not immune from
disturbance model change. Thus, while each mon-
itoring algorithm may work well when only the
targeted problem occurs, relying on a single mon-
itoring algorithm can be misleading in general. For
example, change of the disturbance model may be
diagnosed as change of the plant model if only
the plant model validation algorithm is applied. 2)
To resolve this issue, one needs to investigate how
problem sources can affect each others’ monitoring
algorithm. Probabilistic dependence of each mon-
itoring algorithm on all problem sources has to
be investigated in order to achieve this objective.
3) All processes operate, to a certain degree, in
an uncertain world. The occurrence of a problem,
its symptom, and its interconnection with other
problems/symptoms all have some uncertainties.
A solution has to be built upon a probabilistic
framework. Thus, a joint probability distribution
among all problem sources as well as all symptoms
detected need to be established. As elaborated
shortly, the computation of the probabilities and
statistical inferences grows exponentially with the
number of problem sources and observed symp-
toms. 4) Most of the existing monitoring meth-
ods are data based. While they have advantages
of simplicity, it is obvious that certain a priori
knowledge of process is not only helpful but also
necessary when multiple problem sources are con-
sidered. For example, a process flow chart indicat-
ing components interrelationship may be available
and should be considered in making a meaning-
ful diagnosis and decision. It is of a considerable
challenge to integrate data based algorithms with
a priori knowledge.

In view of problems raised above, a novel proba-
bilistic framework to synthesize various monitor-
ing technologies for control loop and instrument
monitoring/diagnosis is developed in this paper.
A Bayesian model also known as graphical model
[Murphy, 2002], elaborated shortly, is a suitable
framework for solving such problems.
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Fig. 1. Block diagram of control loop

2. PROBLEM STATEMENT

An example of the processes to be consdered is
shown in Fig.1, where C, V , G, N , M represent
the controller, actuator, plant, disturbance, and
sensor, respectively. For illustration, we make the
following assumptions:

• The control law C needs not to be known and
may be a PID or an optimization based con-
strained control law such as model predictive
control.

• Noise model N is varying among a set of
models.

• The nominal plant model G is unknown
except for the case of model validation.

• Both actuator V and sensor M are subject to
fault (or problem). For example, the actuator
may be subject to stiction and sensor may be
subject to bias error.

Control loop performance is the primary interest
of this work and it can vary due to various reasons
such as change in the plant, in the controller,
and/or in disturbance dynamics, or simply due
to faults in the sensors or actuators.

We further assume that certain monitors are avail-
able. Every monitor is, however, subject to distur-
bances and thus false alarms, and each monitor
can be sensitive to other faults that are not sup-
posed for this monitor to look after. For example,
the model monitor may be sensitive to valve non-
linearity although it is designed to monitor the
plant model only.

3. ESTABLISHING A NOVEL FRAMEWORK
FOR CONTROL LOOP DIAGNOSIS

As has been discussed in the last section, a typical
control loop consists of at least four components,
sensor, actuator, controller and plant, each sub-
ject to possible performance degradation or fault.
Any problem in one of these four components can
affect control loop performance. Each of them has
its monitoring algorithms to monitor the problems
and these algorithms may all be affected by one or
more of the four components. Imagine a simplest
network of eight nodes, representing four compo-
nents and four monitors, and their relations are
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described by conditional probabilities. To com-
pletely determine the relation among all nodes,
one needs to know the joint probabilities of eight
random variables. With increased components to
be considered and monitors to be added, the
complexity of the network can quickly go beyond
computational possibility. The emerging Bayesian
garphic model (or simply called Bayesian model
in the sequel), which exploits the independence
of random variable network, is the choice of the
method that sheds a light on the problem solution.

The building block of the Bayesian model is a net-
work of nodes connected by conditional probabili-
ties. These nodes are random variables, which can
be continuous, discrete or even binary. Consider
the simplest binary random variables. If there are
n binary random variables, the complete distribu-
tion is specified by 2n−1 joint probabilities. In the
illustrative Fig. 2, there are 4 binary nodes, each
node having two possible outcomes. For example,
node A may take the value A or Ā. To completely
determine the distribution of the 4 binary vari-
ables, one needs to determine joint probability
P (A,B, C, D) that has 16 outcomes. By taking
account that sum of all probabilities must equal
to 1, one needs to calculate 15 probabilities. How-
ever, as illustrated in Fig. 2, by exploring the
relationship of each node, only 7 probabilities need
to be determined, a considerable reduction from
15. The saving comes from exploiting the condi-
tional independence between certain variables (i.e.
no arcs between certain variables). The structure
of the graphic relationship is also the example
of incorporating the a priori process knowledge
so that the conditional dependence/independence
between certain variables is fully utilized. With
the increase of the nodes, the saving of computa-
tions is exponential, making it possible to apply
Bayesian inference theory in practice.

A

B C

D

( )P A

( | )

( | )

P B A

P B A


( | )

( | )

P C A

P C A



( | )

( | )

P D B

P D B



Fig. 2. An example of Bayesian graphic model

If a Bayesian model like the one shown in Fig. 2 is
available, one can make a variety of inferences. For
example, if we have the observations of B,C, D,
we would like to make an inference to deter-
mine whether A=A or A=Ā. The decision process
can be written under Bayesian formulation as
P (A|BCD) that can be calculated, according to
Bayes theorem

Loop performance

Sensor-problem Actuator-problem Model-problem

Disturbance

Actuator-monitoringSensor-monitoring Model validation

Tuning-problem

Other loops variability

Performance monitor

Monitoring of other loops

A

A A A

Fig. 3. A control loop monitoring and diagnosis
architecture

P (A|BCD) =
P (ABCD)
P (BCD)

=
P (ABCD)∑
A P (ABCD)

Using the structured chain rule of the Bayesian
inference [Korb and Nicholson, 2003] according
to relationship of four nodes in Fig. 2, the joint
probability can be calculated as

P (ABCD) = P (A)P (C|A)P (D|B)P (B|A)

The seven probabilities specified in Fig. 2 are
sufficient to calculate P (A|BCD) to make an
inference about the state of A. To show the
flexibility of the Bayesian modeling approach, we
consider the inference of C given observation D
where in this case C is hidden node (node that
can not be observed directly). Both A and B
are also unobserved (or missing measurements).
According to Bayes theorem, it can be derived
that

P (C|D) =
∑

AB P (ABCD)∑
ABC P (ABCD)

That is to say, even though C is correlated with B
and D, and in fact directly depends on A, one can
still make an inference about C from the evidence
in D in the absence of A and B.

A general monitoring and diagnosis architecture
for the four components discussed so far is shown
in Fig.3. In this figure, the solid nodes are the evi-
dence (observation) nodes while the dashed nodes
are hidden nodes (variables to be inferred). Each
of the four components has its own (direct) moni-
tor except for the controller (tuning) component.
The control performance monitor is the monitor
of the whole control loop performance rather than
the control tuning itself, which is therefore af-
fected by all four components. All other monitors
may be affected by one or more other components
too. Disturbance affects all monitors as expected,
thus introducing false alarms. In addition, vari-
ability from other interacting loops can also have
an effect on the loop of concern. There are moni-
tors for other control loops as well.
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The scope of this paper is to establish and demon-
strate a novel diagnostic framework for solving
problems stated above, namely a probabilistic
framework to synthesize various existing moni-
tors for control loop monitoring and diagnosis.
The development of individual monitors has been
well addressed in the literature and will not be
considered here. While the main objective is to
build a new framework for control loop diagno-
sis, specifically we will consider several represen-
tative problems of common interests. They in-
clude control loop performance problem, process
model mismatch problem, actuator problem, sen-
sor problem, and model predictive control perfor-
mance problem. The task of Bayesian inference is
to isolate problem source(s) through probabilistic
synthesis of all or partial readings of the monitors
and then make optimal diagnosis and decisions.

4. BAYESIAN METHODS FOR CONTROL
LOOP MONITORING AND DIAGNOSIS

4.1 Direct Bayesian inference: sensor problem
diagnosis

To start Bayesian approach for diagnosis, consider
a simple yet illustrative sensor fault diagnosis
Bayesian model shown in Fig.4. The process is
subject to the change of gain, change of input
signal, sensor bias, and change of variance in the
measurement disturbance (varying variance). The
sensor reading is modeled by

y = Ku + f + e

where y is the sensor reading; process gain K takes
two values: 1 and 0 corresponding to normal and
abnormal operation, respectively; input u takes
three different values -1, 0, and 1; sensor bias
f takes two values: 0 and 1 corresponding to
bias and non-bias, respectively; noise e has the
following distribution

e ∼ N(0, σ2) (1)

where variance σ2 also takes two values: 1 and 2
representing normal and abnormal sensor noise,
respectively. The graph of the Bayesian model
shown in Fig.4 is built using NeticaTM . The node
through which the arc originates is called the
parent node and the node where it terminates is
called the child node. The node without parents
is also called root nodes.

The diagnosis process is triggered by sensor read-
ings, which are then synthesized with prior (un-
conditional probability) of each root nodes, to-
gether with conditional probability distributions
of each child nodes of Fig.4. The prior of each root
node can be determined from performance of the
equipments (e.g. tendency to fault) or simply from

Process

Pocess InputSensor Bias

Sensor ReadingNoiseNoise Variance

Process Gain

Fig. 4. Sensor monitor structure

historical data. The conditional probability distri-
bution (the sensor reading node) is built according
to eqn.(1). The intermediate node, Process node,
is a function node, meaning that it is a function of
its parent nodes only, and completely determined
by its parents. Following the structured chain
rule [Korb and Nicholson, 2003], the joint dis-
tribution among remaining six random variables,
namely sensor bias, process input, process gain,
noise variance, noise, and sensor reading, can be
established. Through Bayes theorem, probabilistic
inferences can be made. Many software packages
can be used to perform the inference calculations.

An instance of probabilistic diagnosis is consid-
ered here. For a given time instance, there are two
readings (evidences) available, namely the input
reading and sensor output reading. They are u =
−1 and y = 0.7, respectively. The following pos-
terior (probabilities conditioned on the measure-
ments) can be calculated: P (Sensor = Bias|E) =
97%, P (ProcessGain = Abnormal|E) = 98.7%,
P (NoiseV ariance = normal|E) = 74.1%, where
E represents all evidences (measurements) avail-
able. Thus, one can conclude with high confidence
(no less than 97% probability) that 1) the sensor
has bias and 2) Process Gain is abnormal. One can
also conclude that noise variance is likely (with
74.1% probability) to be normal. This example,
although relatively simple, indicates the power of
Bayesian methods in synthesizing uncertain vari-
ables. The distinguished feature of the Bayesian
methods relative to other existing diagnosis meth-
ods is the explicit quantification of the probability
of faults.

4.2 Probabilistic synthesis and missing data handling:
valve monitoring and diagnosis

In this section, we will show how information that
appears to have some redundancy on one hand
or remotely related on the other hand can be
synthesized using Bayesian methods to produce a
meaningful and reliable diagnosis. It is also shown
how Bayesian methods can handle missing data or
missing variables in a very natural manner. Valve
diagnosis problem will be used as the example.

Actuator fault detection and isolation (FDI) prob-
lem has been well studied in the literature. It
is well known that sensor nonlinearity can affect
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control performance and may cause oscillations of
control loops. Many algorithms have been devel-
oped over the last few years for the detection of
valve nonlinearity [Horch, 2000]. Valve monitoring
has also been shown to be challenging owing to the
nonlinear nature of the problem; thus valve mon-
itors are often subject to numerous false alarms.
In this section, it will be shown how the Bayesian
methods can be utilized to improve valve monitor-
ing/diagnosis. Any monitor that is available in the
literature may be adopted as the valve monitor for
this study.

Since valve nonlinearity affects control perfor-
mance, it should be reflected in certain perfor-
mance measures (signatures) of control loops. In
this section, it will be explored how control per-
formance signatures can be used to improve per-
formance of valve diagnosis although they may
appear remotely related. The signatures of choice
include H2 and H∞ norms of the closed-loop pro-
cess, which can be calculated following time series
analysis of the closed-loop routine operating data
[Huang and Shah, 1999].

The process considered is a 2×2 Wood-Berry col-
umn model with two interacting loops controlled
by two PI controllers, respectively. The process
model is

G =




12.8e−s

6.7s + 1
−18.9e−2.9s

21s + 1
6.6e−7s

10.9s + 1
−19.4e−2.9s

14.4s + 1




Both loops are subject to backlash valve nonlin-
earity. There are two types of disturbances af-
fecting the loops; one of them is integrating dis-
turbance (random walk) and the other one non-
integrating. Which one is acting on the process
is not known during the monitoring process. The
two disturbance models are given respectively by

N1 =




7.6e−8.1

14.9s + 1
0.22e−7.7s

22.8s + 1
9.8e−3.4s

13.2s + 1
0.14e−9.2s

12.1s + 1




N2 =




7.6e−8.1s

s

0.22e−7.7s

22.8s + 1
9.8e−3.4s

13.2s + 1
0.14e−9.2s

s




For this 2 × 2 process under PID control, three
values of each control performance signature may
be calculated, two for the two individual outputs
and one for the overall performance in multivari-
ate sense. They are calculated according to the
following procedure: First, two univariate time
series models are estimated based on two out-
put data sets, y1(t), y2(t), respectively, and two
H2’s and two H∞’s are calculated according to
the estimated models. This procedure therefore
results in two H2 measures, H2y1 and H2y2; two
H∞ measures, Hinfy1 and Hinfy2. Meanwhile,

a multivariate time series model can also be ob-
tained from two output time series and MIMO
H2 and H∞ can also be calculated, namely one
MIMO H2 measure, H2MIMO, and one MIMO
H∞ measure, HinfMIMO. There seems some re-
dundancy between MIMO and SISO performance
measures. However, Bayesian methods are tools
naturally dealing with redundancy and “squeeze”
the essential information from the redundancy.
The Bayesian model is built in Fig.5.

The valve monitors chosen have the following
performance:

Actual Status P(Detected) P(Not detected)
Backlash 0.70 0.30
No Backlash 0.50 0.50

It is obvious the two valve monitors have a high
false alarm rate, 50%, indicating a need for im-
provement before it can have meaningful appli-
cations. The prior for valve 1 to have backlash
is about 30% while that for valve 2 is 25%. The
priors are known from the knowledge of the valve
such as its track record of reliability or its age of
usage. It may also be estimated from historical
data from the same brand of valves.

In this simulation, there is backlash in valve
1 and no backlash in valve 2. An instance of
diagnosis is considered where valve 1 monitor
indicates backlash (which triggers the diagnosis),
and valve 2 monitor indicates no backlash. Other
signatures are not used yet. Due to the high
false alarm rate, the conclusion of valve 1 being
backlash can not be made. This can be seen
with Bayesian inference, by which the calculated
posterior of valve 1 being backlash is only 36.5%
(owing to small prior of backlash and large false
alarm rate) and the posterior of valve 2 being no
backlash is 83.6%. Therefore, with only the valve
monitors as evidences, the diagnosis conclusion of
valve 1 being backlash can not be made. When
all signatures are used however, the posterior
can be updated. The additional evidences are
H2MIMO = 8.6, HinfMIMO = 103.1, H2y1 =
2.2, Hinfy1 = 37, H2y2 = 4.6, Hinfy2 = 5.3.
With these additional evidences, the posterior
of valve 1 being backlash is now about 100%
(even though it has small prior of backlash) and
the posterior of valve 2 being no backlash 100%,
indicating definitely a problem in valve 1 and
definitely no problem in valve 2.

The Bayesian inference is also robust in the pres-
ence of missing data or missing variables. When
three of the six signatures, HinfMIMO, H2y1,
and H2y2, are no longer available (missing), the
new calculated posterior of valve 1 being backlash
is 81% and valve 2 being no backlash is 89.3%. The
fact that the Bayesian inference can handle miss-
ing data and missing variables very naturally has a
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Fig. 5. Bayesian model for valve backlash diagno-
sis.

great practical significance. Most of monitoring or
diagnosis algorithms fail if certain variables are no
longer available or certain data are missing. The
Bayesian methods exploit all available information
to achieve a best inference result.

4.3 Synthesizing monitors system: control loop
performance diagnosis

In this section, we consider synthesis of various
monitors to perform control loop performance di-
agnosis using Bayesian methods. The research on
control loop performance monitoring has been and
remains to be one of the most active research
areas in process control community. Many meth-
ods for control performance monitoring have been
established [Harris, 1989; Huang and Shah, 1999;
McNabb and Qin, 2005]. One common feature of
the existing methods is that they monitor per-
formance of the overall control loop, which can
be influenced by all components of the loops. In
this sense, they are monitors of loop performance
rather than just the controller itself.

Consider a control loop performance diagnosis
platform that consists of the valve monitor, model
monitor (or model validation), sensor monitor,
and control performance monitor. Because the
process models include plant model and distur-
bance model, two model monitors are needed in
order to distinguish which of the two models
has changed. Two model validation algorithms
are adopted here. The local approach with out-
put error (OE) formulation only detects plant
model change, independent of disturbance model
changes [Huang, 2000]. The local approach with
prediction error model (PEM) formulation de-
tects changes of both plant model and distur-

Valve Stiction

Sensor Bias OE Validation

Stiction Monitor

Performance monitor Plant Model PEM Validation

Disturbance Bias monitor

Fig. 6. Bayesian framework for control loop per-
formance diagnosis

bance model [Huang et al., 2003]. The control
performance monitor can be index-based monitor
with minimum variance control benchmark, LQG
benchmark [Huang and Shah, 1999] or other suit-
able benchmarks [Qin, 1998; Harris et al., 1999;
Jelali, 2006]. Valve monitor can be any of existing
monitors available in the literature. All of the
monitors use mean centered data except for the
bias monitor; thus they are insensitive to sensor
bias. To detect sensor bias, the original data are
used in the model validation algorithm. In this
case, sensor bias error becomes an additive fault
in the model validation problem. Thus the sen-
sor bias monitor is in fact the model validation
algorithm for detecting additive fault [Basseville
and Nikiforov, 1993]. All monitors but the OE
based model validation algorithm are sensitive to
the change of disturbance models. The Bayesian
model of control loop diagnosis is shown in Fig.6.

An instance of control loop diagnosis is considered
here. The outcome of the performance monitor is
descretized into only three values, namely opti-
mal, good, and bad. The evidences in this instance
are: Performance monitor indicates ‘bad’ perfor-
mance that actually triggers this diagnosis proce-
dure; no stiction is detected; data fail both OE
model validation test and PEM model validation
test; bias is not detected. The posterior through
Bayesian inference indicates that the poor control
loop performance is most likely induced by plant
model change with probability 88.9%. The con-
ditional probabilities for other problems are less
than 30%. The conditional probability of having
non-integrating disturbance is 70.5%.

4.4 Dynamic Bayesian methods

Our discussions up to now are limited to the static
Bayesian model and inference. The evolution of
the variables with time has not been considered,
i.e. the diagnosis is conducted instance by instance
without considering possible temporal relations.
For example, the fact that, a healthy equipment
has more tendency to have normal operation than
an aged equipment in the next sampling instance
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if it is normal at the current time, has not been
considered. The dynamic relation can be utilized
to improve the reliability of the diagnosis.

Let o1, o2, . . . , on be dynamic observations, and
h1, h2, . . . , hn be the corresponding hidden nodes
over the same time window. Define On :=
{o1, o2, . . . , on} and Hn := {h1, h2, . . . , hn}. A
time evolution state space model can be written
as

p(hn|hn−1) = f(hn−1, n)

p(on|hn) = g(hn, n)

where f(.) and g(.) are probability distribution
functions.

As an example, a special case of this class of
models is the Hidden Markov Model [Rabiner,
1989] (HMM) where the model can be simplified
to

p(hn|hn−1) = A

p(on|hn) = Π

where A and Π are both a probability matrix.

Now denote p(hn, On) as joint probability func-
tion of hn and On. Following the approach of
[Smyth, 1994], the following recursive algorithm
for dynamic Bayesian inference can be derived:

p(hn, O(n)) =

∫

hn−1

p(hn, hn−1, On)dhn−1

=

∫

hn−1

p(hn, hn−1, on, On−1)dhn−1

=

∫

hn−1

p(on|hn, hn−1, On−1)p(hn, hn−1, On−1)dhn−1

=

∫

hn−1

p(on|hn)p(hn|hn−1, On−1)p(hn−1, On−1)dhn−1

= p(on|hn)

∫

hn−1

p(hn|hn−1)p(hn−1, On−1)dhn−1 (2)

According to Bayes law,

p(hn, On) = p(hn|On)p(On)
Substituting this into (2) yields

p(hn|On)p(On) =

p(on|hn)

∫

hn−1

p(hn|hn−1)p(hn−1|On−1)p(On−1)dhn−1

Further simplification yields

p(hn|On) =

p(On−1)

p(On)
p(on|hn)

∫

hn−1

p(hn|hn−1)p(hn−1|On−1)dhn−1

= kp(on|hn)

∫

hn−1

p(hn|hn−1)p(hn−1|On−1)dhn−1 (3)

where k = p(On−1)
p(On) is a normalizing factor

to ensure sum of probabilities to be 1. This
derivation gives a recursive algorithm for dy-
namic Bayesian inference of hn given evidence
o1, o2, . . . , on; namely, given conditional probabil-
ity at time n − 1, p(hn−1|On−1), the conditional
probability at next time n, p(hn|On), can be cal-
culated recursively.

The remaining question is how p(hn|hn−1) and
p(on|hn) can be specified in practice. For the
hidden Markov model [Rabiner, 1989], p(hn|hn−1)
is defined as state transition probability, and
p(on|hn) is known as emission probability. In state
space notation they represent state transition and
observation respectively. The observation on is
typically continuous-valued and may be written
as

on = φ(hn) + en

where φ() is a nonlinear function and en follows
certain probability distribution function p(en).
Then

p(on − φ(hn)|hn) = p(en)

from which, p(on|hn) can be readily derived.

The state transition probability p(hn|hn−1) may
be derived from a priori information such as the
reliability of an instrument or from historical data.
For example, a sensor takes two states, normal and
abnormal. Its mean time between failure (MTBF)
is a reliability data and may be derived as [Smyth,
1994]

MTBF =
T

1− a11

where T is the sampling time and a11 is the
state transition probability p(ht+1 = normal|ht =
normal). Here ht represents the state of the
sensor.

To illustrate, let’s revisit the sensor diagnosis ex-
ample. If the sensor diagnosis Bayesian model
is rolled over along time dimension, a dynamic
Bayesian model can be formed as shown in Fig.7,
where we only show the dynamic Bayesian model
at two time instances, t and t + 1. It can be
expanded to include other time instances easily.
The intra-connections within each time instance
are the same as that of the static Byesian sensor
model, while the inter-connections between con-
secutive instances represent dynamic state tran-
sitions. The dynamic Bayesian inference derived
above can be used to make sequential sensor di-
agnosis.

As an example, let the process gain status be
of main interest for the diagnosis. With both
sensor reading (y=0.4) and input reading (u=-1)
at time instance t, the Bayesian inference indicates
that the conditional probability for the process
gain to be abnormal is 65.9%. The predicted gain
abnormality at time t + 1 and t + 2 is 72.7% and
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Fig. 7. Dynamic Bayesian model for sensor fault
diagnosis.

78.2%, respectively. Evolving time instance from t
to t+1, new input reading (ut+1 = −1) and sensor
readings (yt+1 = 0.6) are available in addition to
that at time t. With evidences in the two time
instances, the dynamic Bayesian inference shows
that the probability for the gain to be abnormal
at t + 1 is 99.1%, and the predicted abnormal
status at future time t + 2 is 99.3%, and the
smoothed probability of abnormality of the gain
at t (looking back from time t + 1) is now 51.2%.
Clearly, the dynamic Bayesian models provide us
with more reliable diagnosis by using all available
observations.

5. BEYOND BASIC CONTROL LOOPS:
BAYESIAN METHODS FOR MODEL
PREDICTIVE CONTROL ANALYSIS

In this section, how Bayesian methods can be used
for MPC performance analysis and decision mak-
ing will be addressed, with a focus on the analysis
of variance changes through tuning and constrain
limit changes through constraint adjustments, and
their impact on MPC performance. In industrial
MPC applications, constraints on some controlled
variables (CV) and manipulated variables (MV)
are often set conservatively [Singh and Seto, 2002],
leading to possible loss of profits. It is of practical
interest to know how the change of the constraint
limits or variance reductions impacts MPC per-
formance.

For illustration, consider an MPC application
with two MVs and two CVs. One of the CVs y1

is a quality variable that determines the profit.
Due to the variability, all CVs have to be back
off certain distance from the constraints to avoid
constraint violations. In general, the maximum
profit of quality variables lie in the constraints,
but the quality variables are often not able to
operate near their optimum either due to their
own variability or due to constraints on MVs and
other CVs. There are three possible methods to
push quality CVs closer to their optimum, namely
reduce variability, relax constraints on some MVs,
and relax constraints on some CVs.

2y

1y

Upper limit

Upper limit

Lower limit

Lower limit

Maximum profit

Actual average 
operating point

Lost profit
Quality variable

Constrained variable

Fig. 8. Base case operation
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1y

Upper limit

New upper limit

Lower limit

Lower limit

Maximum profit

Lost profit
Quality variable

Constrained variableOriginal upper limit

Fig. 9. Benefit by relaxing constraint limit

Because of disturbances, there is variability on
both y1 and y2. Assuming that the maximum
profit point of y1 is located on its upper limit as
shown in Fig.8, it is clear that the actual (average)
operating point (dash line) is not at its optimum,
leading to lost profit. The lost profit in this case
may be attributed to the non-quality CV, y2,
which has been operated near its constraint. Any
further upward move of y1 may make y2 violate
its constraint due to the interaction. Therefore,
operation of each CV is determined by the mean
values and variances of all CVs and MVs that
are interacting. It is assumed that, for CVs, a
reasonable percentage of constraint violation, for
example, 5%, is allowed such that 95% of oper-
ation falls within the constraints for a normal
process operation. To move the operating point
of y1 closer to its optimum, the solutions may be
to relax the constrain limits of y2 as indicated by
Fig.9 or to reduce the variability as indicated by
Fig.10.

The analysis methods proposed here will serve
for two objectives. If some CVs and MVs can be
changed their variances or the constraint limits,
these methods will provide a guideline on how
and which variances or constraint limits should
be changed in order to achieve the desired profit.
If, however, the variances or constraints can not
be changed, these studies will inform operation
personnel which variances or constraints the profit
depends on the most and one has to be careful in
setting the variance targets or constraint limits for
these variables. There is tendency to set conser-
vative constraint limits in practice. This type of
analysis will help reduce the conservativeness for
profit sensitive variables.

In general, some of CVs and some of MVs may
be allowed to relax their constraints to certain
percentage. The optimal operation of the process
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Fig. 10. Benefit by reducing variability

after the relaxation of constraints without reduc-
ing the variability can be formulated as

Maxuo Profit Function
st P(CV constraint violation) < 5%

MVs are all inside constraints
Steady state input-output relation

(4)

where uo is the optimal operating point of MVs;
the probability distribution function (e.g. Gaus-
sian) is determined from the routine operating
data in terms of the shape (variance/covariance
for Gaussian).

Similarly, process variability may be changed by
tuning the MPC. As an example, we consider
the tuning through adjustment of weights on
CVs and MVs. Upon each set of tuning of the
MPC weighting parameters, an optimal control
problem at the dynamic control level is solved
and new distribution of input/output in terms of
the shape (variance/covariance for Gaussian) is
determined in a similar way as [Xu et al., 2007].
With the shape of the new distribution function,
the optimal operating points owing to the change
of weighting are again solved from eqn.(4).

Let n CVs and m MVs be allowed to adjust their
wights or relax their constraints. Optimizations
will be carried out off-line to find the optimal
operating points for each combination of changes.
Let q be the number of quality CVs, a Bayesian
model can be created with n CVs and m MVs as
parent nodes and q CVs as the child node. The
probability distribution function of q quality CVs
operating at optimal operating points represents
the conditional probability distribution of the
quality CVs. The expected profit of changing the
weighting or the constraints can be inferred from
the Bayesian model. On the other hand, if certain
profit is desired, the maximum aposterior estimate
of changes in the constraints or in the weights
can be inferred too. Some industrial application
results will be presented in [Agarwal et al., 2007]
in the same conference.

6. CONCLUSION AND PROBLEMS FOR
FUTURE RESEARCH

A novel framework for synthesizing control loop
monitoring and diagnostic problems is developed

in this paper. It is shown that the emerging
Bayesian methods are the appropriate solution for
control loop monitoring and diagnosis. Not only
do the Bayesian methods quantify the probability
for diagnosis solutions, but also they are flexible in
the form of models, structures, and data including
the missing variables. Several process and control
diagnosis problems including control loop perfor-
mance diagnosis, valve problem diagnosis, sensor
problem diagnosis, dynamic inference diagnosis,
and model predictive control performance analysis
have been formulated under the Bayesian frame-
work and their solutions are illustrated through
examples.

We have also applied Bayesian methods to several
other problems with actual industrial applications
background, including soft sensors and process
modeling. The following are some of experiences
gained from these applications and problems that
need to be addressed:

(I) Bayesian methods are applicable to a wide
range of practical problems. Not only can the
Bayesian methods be used to infer unknowns
but also they can be used for decision making
to optimize certain objective functions.

(II) Since Bayesian methods solve probability dis-
tribution problem, the results can be priori-
tized accordingly to facilitate decision mak-
ing. Other statistics such as confidence inter-
vals are inherited in the solution.

(III) Bayesian methods can handle many types of
models including quantitative and qualita-
tive models, linear and nonlinear models, first
principle and data-driven models, Gaussian
and non Gaussian distributed models, etc.

(IV) Bayesian methods handle missing data or
missing/hidden variables in a very natu-
ral way. The celebrated Kalman filter is a
Bayesian method and the state is so called
hidden variable.

(V) Although exploiting independency of vari-
ables such as Bayesian network does reduce
computation burden considerably, the com-
putation load and need of large memory
are the bottleneck when dealing with large
scale problems. Efficient computation meth-
ods and minimization of memory require-
ment are the active areas of research. A good
reference can be found in [Pernestal, 2007].

(VI) Determination of prior is another challenging
problem and has been historically a contro-
versial issue too. Appropriate setup of the
prior can improve the inference while incor-
rect choice of prior may harm the inference.
Certainly, the prior gets less important when
more training data are used. Without any
information, however, the prior can be simply
set as uniform. In fact, conventional data
driven approaches (such as likelihood estima-
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tion approach) are naturally related to the
Bayesian approach when the prior is set to
be uniform [Pernestal, 2007]. Thus debate
of conventional data-driven vs Bayesian ap-
proach will be going on, which together with
determination of prior is a direction of active
research. The good references can be found
in [Kass and Wasserman, 1996; Jaynes, 2001;
Pernestal, 2007].

(VII) The representation of the Bayesian graphic
model is not unique. The determination of
independency of variables is nontrivial, par-
ticularly for large scale problems. Structure
learning of graphic models directly from
training data is another problem deserved
research. Some references of this topic can
be found in [Cooper and Herskovits, 1992;
Pernestal, 2007].

(VIII) The conditional probability distributions may
be determined from first-principle deriva-
tions or through historical data training.
Both can result in some errors or uncertain-
ties. Sensitivity of Bayesian inference to these
uncertainties is yet to be studied.
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