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Abstract: This paper presents an integrated robust fault detection and fault-tolerant control
architecture for transport-reaction processes modeled by quasi-linear parabolic partial dif-
ferential equations with uncertain variables, control constraints and control actuator faults.
Using an appropriate reduced-order model that captures the dominant process dynamics, the
proposed architecture comprises a family of robustly stabilizing bounded feedback controllers
with explicitly characterized stability and uncertainty attenuation properties, a performance-
based fault detection scheme and a high-level supervisor that reconfigures the control actu-
ators upon fault detection in a way that maintains robust closed-loop stability. The key idea
is to shape the closed-loop performance via robust control in a way that facilitates the design
of robust fault detection rules that are less sensitive to the adverse effects of uncertainty.
The results are demonstrated using a non-isothermal tubular reactor example with recycle.
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1. INTRODUCTION

Transport-reaction processes with significant diffusive
and dispersive phenomena are typically characterized
by strong nonlinearities and spatial variations, and
are naturally modeled by quasi-linear parabolic Par-
tial Differential Equations (PDEs). Examples include
tubular and packed-bed reactors, as well as chem-
ical vapor deposition and crystal growth processes.
Unlike spatially homogeneous processes, the control
problem arising in the context of transport-reaction
processes often involves the regulation of spatially
distributed variables (such as temperature and con-
centration spatial profiles) using spatially-distributed
control actuators and measurement sensors. The need
to design control and monitoring systems for these
processes has motivated significant research work on
the analysis and control of distributed parameter sys-
tems (e.g., (Christofides and Daoutidis, 1996; Pala-
zoglu and Karakas, 2000; Christofides, 2001; Hoo and
Zheng, 2001; Ruszkowski et al., 2005)).
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Compared with these efforts and many others in
this area, the problems of fault diagnosis and fault-
tolerant control of distributed processes has received
limited attention (El-Farra and Christofides, 2004;
Demetriou and Kazantzis, 2004). This is an impor-
tant problem given the vulnerability of process control
systems to faults (e.g., in the actuators, sensors or
process equipment) and the detrimental effects that
such faults can have on the process operating ef-
ficiency and, ultimately, on the final product qual-
ity. While an extensive body of literature exists on
fault diagnosis of chemical processes, most methods
have been developed for lumped parameter processes
(e.g., (Himmelblau, 1978; Frank, 1990; Kresta et al.,
1991; Dunia and Qin, 1998; Tatara and Cinar, 2002;
Aradhye et al., 2002; Simani et al., 2003; Cheng et
al., 2003; Mehranbod et al., 2005)). At this stage,
a unified framework for the integration of fault di-
agnosis and fault-tolerant control for nonlinear dis-
tributed processes remains lacking, thus limiting the
achievable control quality and reliability in transport-
reaction process operation. To address this problem,
we recently developed in (El-Farra, 2006) a model-
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based fault-tolerant control architecture for distributed
processes modeled by nonlinear parabolic PDEs with
control constraints. The architecture integrates fault
detection, feedback and supervisory control on the
basis of appropriate reduced-order models that cap-
ture the dominant process dynamics. Using singular
perturbations techniques, appropriate fault detection
thresholds and actuator reconfiguration criteria were
establish to guard against false alarms when the con-
trol architecture is implemented on the process.

In addition to nonlinearities and spatial variations, an-
other important issue that must be accounted for in the
design of model-based fault-tolerant control systems
is the presence of plant-model mismatch. Parabolic
PDE systems that model transport-reaction processes
are uncertain due to the presence of unknown or par-
tially known process parameters and time-varying ex-
ogenous disturbances. In the context of fault-tolerant
control, the impact of model uncertainty permeates all
layers of the control architecture. Within the feedback
control layer, for example, the uncertainty alters the
stability regions of the nominal controllers and may
even render the closed-loop system unstable if not
accounted for explicitly in the controller design. Un-
certainty can also induce false detection alarms that
in turn trigger unnecessary control system reconfigu-
ration leading to closed-loop instability or significant
performance degradation.

To address these problems, we develop in this work
an integrated robust fault detection and fault-tolerant
control (FD-FTC) architecture for transport-reaction
processes modeled by systems of nonlinear parabolic
PDEs with control constraints, uncertain variables and
actuator faults. The central idea is to shape the healthy
closed-loop performance, via robust feedback control,
in a way that facilitates the design of robust fault de-
tection rules that are less sensitive to the uncertainty.
The rest of the paper is organized as follows. Follow-
ing some preliminaries in Section 2, the robust FD-
FTC problem is formulated in Section 3. In Section
4, Galerkins method is used to obtain an approximate,
finite-dimensional system that captures the dominant
dynamic characteristics of the PDE system. The ap-
proximate model is then used in Section 5 to design
the FD-FTC structure, including a family of robust
feedback controllers with well-characterized stability
regions, a performance-based fault detection scheme,
and a stability-based supervisory control system. The
results are applied to a non-isothermal tubular reactor
in Section 6. Due to space limitations, the proofs of
the main results will be omitted (see the full version in
(Ghantasala and El-Farra, 2007) for the proofs and for
a more in-depth discussion of the results).

2. PRELIMINARIES
We focus on transport-reaction processes described by
systems of quasi-linear parabolic PDEs of the form:

∂x̄

∂t
= A

∂2x̄

∂z2
+ B

∂x̄

∂z
+ f(x̄) + W (x̄, d(z)θ(t))

+ ωbk(z)[uk(t) + fk
a (t)]

(1)

|uk(t)| ≤ uk
max, k(t) ∈ K, |θ(t)| ≤ θb, (2)

where K := {1, 2, · · · , N}, N < ∞, subject to the
boundary and initial conditions:

Cix̄(ηi, t) + Di
∂x̄

∂z
(ηi, t) = 0, i = 1, 2

x̄(z, 0) = x̄0(z)

(3)

where x̄(z, t) ∈ IRn denotes the vector of state vari-
ables, z ∈ [η1, η2] ⊂ IR is the spatial coordinate,
t ∈ [0,∞) is the time, f(·) is a nonlinear func-
tion, W (x̄, d(z)θ(t)) is a nonlinear vector function,
θ(t) ∈ IRq denotes the vector of uncertain variables,
which may include uncertain process parameters or
exogenous disturbances, d(z) is a known smooth vec-
tor function that specifies the positions of action of
the uncertain variables, uk denotes the vector of con-
strained manipulated inputs (control actuators) asso-
ciated with the k-th control configuration, bk(z) is a
known smooth vector function that describes how the
control action is distributed in [η1, η2], fk

a ∈ IRm

denotes the faults in the actuators of the k-th control
configuration, k(t) is a discrete variable that takes
values in a finite set K and denotes which control con-
figuration is active at any given time, |·| is the standard
Euclidean norm, uk

max is a positive real number that
captures the size of the constraints, θb is a positive
real number that captures the size of the uncertainty,
A,B, Ci, Di are constant matrices with A positive-
definite, and x̄0(z) is a smooth function of z.

For a precise characterization of the class of PDEs
considered, we use standard operator theory to re-
write the PDE of Eqs.1-3 as an infinite-dimensional
system of the general form:

ẋ = Ax + Bk(uk + fk
a ) + f(x) +W(x)θ (4)

where x(t) is the state function defined on an ap-
propriate Hilbert space, A is the differential opera-
tor, B is the input operator, f(x) is locally Lipschitz
and satisfies f(0) = 0, and x(0) = x0 = x̄0(z).
For A, the eigenvalue problem is defined as: Aφj =
λjφj , j = 1, . . . ,∞, where λj denotes an eigenvalue
and φj denotes an eigenfunction. The eigenspectrum
of A, σ(A), is defined as the set of all eigenvalues of
A. For the majority of diffusion-convection-reaction
processes (Ray, 1981; Christofides, 2001), the eigen-
spectrum is discrete and ordered. Also, for parabolic
PDEs (Friedman, 1976), the eigenspectrum of A can
be partitioned as σ(A) = σ1(A)

⋃
σ2(A), where

σ1(A) consists of the first m slow (possibly unstable)
eigenvalues, i.e., σ1(A) = {λ1, . . . , λm} (with m
finite), |Re{λ1}|/|Re{λm}| = O(1), and σ2(A) is
a stable infinite complement containing the remaining
fast eigenvalues, i.e., Re{λm+1} < 0. Furthermore,
the separation between the slow and fast eigenvalues
of A is large, i.e., |Re{λm}|/|Re{λm+1}| = O(ε)
where ε < 1 is a small positive number. These proper-
ties imply that the dominant dynamics of the system of
Eq.4 can be approximated by a finite-dimensional sys-
tem, and motivate the use of Galerkins method in Sec-
tion 4 to derive a reduced-order model that captures
the dominant (slow) dynamics of the PDE system.

88



3. PROBLEM FORMULATION AND OVERVIEW
SOLUTION METHODOLOGY

Consider the system of Eq.4 where the uncertain vari-
ables are vanishing, in the sense that they do not alter
the nominal equilibrium solution. Of the N distinct
control actuator configurations available, only one is
to be active for control at any given time, while the
rest are kept dormant as backup. Each configuration is
characterized by a distinct actuator spatial placement.
The problems under consideration include how to sup-
press the effect of uncertainty, how to detect faults in
the operating actuator configuration under uncertainty,
and, upon detection, how to decide which fall-back
actuator configuration should be activated to main-
tain robust closed-loop stability and achieve fault-
tolerance. To address these problems, we proceed as
follows. Initially, model reduction techniques are used
to obtain an approximate finite-dimensional system
that captures the dominant dynamics of the infinite-
dimensional system of Eq.4. The reduced-order model
is then used to: (1) synthesize, for each actuator con-
figuration, a bounded robust nonlinear feedback con-
troller with well-characterized stability and perfor-
mance properties, and (2) design a robust fault detec-
tion scheme that exploits the uncertainty decoupling
capabilities of the controller to detect destabilizing
and/or performance-deteriorating faults by comparing
the actual evolution of the system with the expected
fault-free behavior. Finally, a switching law is devised
to orchestrate actuator reconfiguration in a way that re-
spects control constraints and maintains robust closed-
loop stability. To simplify the presentation of our re-
sults, we focus only on the state feedback problem.

4. MODEL REDUCTION
Let Hs, Hf be modal subspaces of A, where Hs

is spanned by the first m eigenfunctions and Hf is
spanned by the remaining ones. Defining the orthog-
onal projection operators, Ps and Pf , such that xs =
Psx, xf = Pfx, the state of the system of Eq.4 can be
decomposed as x = xs + xf . Applying Ps and Pf to
the system of Eq.4 and using the decomposition of x,
the system of Eq.4 can be decomposed as:

ẋs = Fs(xs, xf ) + Bk
s (uk + fk

a ) +Ws(xs, xf )θ

ẋf = Ff (xs, xf ) + Bk
f (uk + fk

a ) +Wf (xs, xf )θ
(5)

where xs(0) = Psx0, xf (0) = Pfx0, Fs(xs, xf ) =
Asxs + fs(xs, xf ), As = PsA is an m×m diagonal
matrix of the form As = diag{λj}, Bs = PsB,
fs = Psf , Ws = PsW , Ff (xs, xf ) = Afxf +
ff (xs, xf ), Af = PfA is an unbounded differential
operator which is exponentially stable, Bf = PfB,
ff = Pff and Wf = PfW . In the remainder of the
paper, we will refer to the xs- and xf -subsystems as
the slow and fast subsystems, respectively. Neglecting
the fast and stable xf -subsystem in Eq.5, the following
approximate, m-dimensional slow system is obtained:

˙̄xs = Fs(x̄s, 0) + Bk
s (uk + fk

a ) +Ws(x̄s, 0)θ (6)

where the bar symbol in x̄s denotes that this variable
is associated with a finite-dimensional system.

5. REDUCED-ORDER MODEL-BASED DESIGN
OF ROBUST FD-FTC STRUCTURE

Having obtained a finite-dimensional system that ap-
proximates the dominant dynamics of the infinite-
dimensional system, we proceed in this section to
describe the design of the various components of the
robust FD-FTC architecture.
5.1 Robust feedback controller synthesis
The objectives of this step are to: (a) synthesize, for
each actuator configuration, a feedback controller that
enforces constraint satisfaction and robust stability
with an arbitrary degree of attenuation of the effect of
uncertainty on the closed-loop system, and (b) explic-
itly characterize the robust stability region associated
with each controller in terms of the constraints, the
size of uncertainty and the actuator locations. While
several designs can be used to achieve these objec-
tives, we consider, for the sake of a concrete illustra-
tion, the following bounded control law introduced in
(El-Farra and Christofides, 2003):

uk = −kr(x̄s, u
k
max, θb, ξ

k, χ, φ)(LBk
s
V )T (7)

where

kr(·) =
α(x̄s) +

√
α2(x̄s) + (uk

maxβ(x̄s, ξk))4

β2(x̄s, ξ
k)

[
1 +

√
1 + (uk

maxβ(x̄s, ξk))2
] (8)

α(·) = LFsV +(ρ‖x̄s‖+ χθb‖LWsV ‖)
( ‖x̄s‖
‖x̄s‖+ φ

)
,

β(·) = ‖(LBk
s
V )T ‖, V is a robust control Lyapunov

function for the system of Eq.6, LBk
s
V and LWsV are

row vectors whose components are the Lie derivatives
of V along the columns of Bk

s and Wk
s , respectively,

θb is the bound on the uncertainty, and ρ, χ and φ are
adjustable parameters that satisfy ρ > 0, χ > 1 and
φ > 0. Let Π(θb, u

k
max, ξ

k) be the set defined by:
Π := {x̄s : α(x̄s, ρ, χ, φ, θb) ≤ uk

maxβ(x̄s, ξ
k)} (9)

and consider the subset:
Ω̄s(θb, u

k
max, ξ

k) := {x̄s : V (x̄s) ≤ ck
max} ⊆ Π (10)

for some ck
max > 0. Proposition 1 that follows char-

acterizes the closed-loop stability properties of the
controller of Eqs.7-8.

Proposition 1: Consider the closed-loop system of
Eqs.6-8, for a fixed k ∈ K, with fk

a (t) ≡ 0 and
x̄s(0) ∈ Ω̄s(θb, u

k
max, ξ

k). Then there exists a positive
real number, φ∗, such that if φ ≤ φ∗, the origin of
the closed-loop system is exponentially stable, i.e.,
there exists k1 > 1, k2 > 0 such that ‖x̄s(t)‖ ≤
k1‖x̄s(0)‖e−k2t := β(‖x̄s(0)‖, t), for all t ≥ 0.

Remark 1: The family of control laws in Eqs.7-8
share the same structure but differ in where the con-
trol action is applied in the spatial domain. Owing to
the dependence of the control action on the actuator
locations and the size of the uncertainty, the region of
robust stability (i.e., the set of feasible initial condi-
tions that can be steered to the origin under uncertainty
and constraints) is parameterized not only by the size
of the control constraints, but also by the size of the
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uncertainty and the locations of control actuators. This
parametrization implies that Ω̄k

s can be interpreted in
several ways. For example, for a given initial condi-
tion and magnitude of the uncertain variables, Ω̄k

s can
be used to determine the set of admissible actuator
locations. Alternatively, for fixed actuator locations
and size of the uncertain variables, Ω̄k

s describes the
feasible initial conditions. Furthermore, uk

max, θb, ξk,
can be viewed as “tuning parameters" that control the
size of the stability region. For example, inspection
of Eqs.9-10 reveals that the tighter the constraints
and/or the larger the uncertainty, the smaller the robust
stability region. Finally, Eqs.9-10 point to a tradeoff
between the size of the stability region (which can be
enlarged using small values for the controller tuning
parameters χ and ρ), and the controller’s robust per-
formance (which requires large values of χ and ρ to
achieve the desired degree of uncertainty attenuation).
This tradeoff can be managed by proper selection of
the actuator locations.

Remark 2: Beyond suppressing the effect of uncer-
tainty and enforcing robust closed-loop stability, an
important feature of the robust controllers of Eqs.7-
8 is that they provide an explicit characterization of
the expected behavior of the closed-loop system in
the absence of faults. This characterization, which can
be obtained directly from Lyapunov analysis, is ex-
pressed in terms of a time-varying bound that captures
the evolution of closed-loop state under healthy actua-
tion. As explained in the next section, this feature will
facilitate the design of a robust fault detection scheme.

5.2 Robust performance-based fault detection

The basic idea in any fault detection scheme is to
compare the actual behavior of the monitored system
with the behavior expected in the absence of faults
and to use the discrepancy between the two, if any,
as an indicator of faults. In the absence of uncertainty,
the expected behavior can be obtained using a filter
that simulates the healthy behavior of the closed-loop
system; and the residual in this case is sensitive only
to the faults. In the presence of uncertainty, however,
replicating the behavior of the uncertain system of
Eq.6 is not feasible. Furthermore, unless the filter is
re-designed to achieve uncertainty decoupling (which
is a difficult task for nonlinear systems), the residual
will be sensitive to both the uncertainty and the faults,
thus leading to possible false detection alarms.

To achieve robust fault detection and prevent false
alarms, we follow a performance-based approach in-
stead. The key idea is to exploit the stability and per-
formance properties of the robust controllers designed
in Section 4.1 to characterize the expected healthy
behavior and derive a suitable criterion for fault detec-
tion. Specifically, we recall from Section 4.1 that, in
the absence of faults, the robust controllers of Eqs.7-8
force the decay of the Lyapunov function, V , along
the trajectories of the closed-loop uncertain system,
according to a well-defined rate. Therefore, deviation

from this behavior is an indication that a fault has
occurred. This idea is formalized in Proposition 2.

Proposition 2: Consider the approximate, finite di-
mensional closed-loop system of Eqs.6-8, for a fixed
k ∈ K, with x̄s(0) ∈ Ω̄k

s , and φ ≤ φ∗, where φ∗ was
defined in Proposition 1. Then if either V̇ (Td) ≥ 0 or
‖x̄s(Td)‖ > β(‖x̄s(0)‖, Td), for some Td > 0, where
β(·, ·) was defined in Proposition 1, then fa(Td) 6= 0.

Remark 3: The above rule-based fault detection
scheme ensures that any fault that negatively impacts
either stability or performance is detected. The condi-
tion V̇ (Td) > 0 detects destabilizing faults that cause
an increase in the overall system’s energy, while the
criterion ‖x̄s(Td)‖ > β(‖x̄s(0)‖, Td) detects faults
that cause a deterioration in the response speed in ex-
cess of the minimum allowable speed enforced by the
controller. Note that both conditions are needed. For
example, if only the first condition is used, faults that
slow down the system response (but do not increase
V ) will go undetected. On the other hand, if only the
second condition is used, then faults that cause an
increase in V may go undetected for some time. The
reason is that, because of the presence of uncertainty
and constraints, only a lower (worst-case) bound on
the closed-loop response speed can be obtained (this
corresponds to an upper bound on the response it-
self; note, however, that these bounds can be tight-
ened through proper controller tuning). Therefore,
if the actual closed-loop uncertain system evolves
such that ‖x̄s‖ decays at a rate faster than the min-
imum prescribed, e.g., ‖x̄s(t)‖ ≤ βf (‖x̄s(0)‖, t) <
β(‖x̄s(0)‖, t), then an increase in V will cause ‖x̄s‖
to cross the threshold β(‖x̄s(0)‖, t) after some time;
hence the detection delay. The timely detection of
faults enhances the ability of the control system to re-
cover from failures through actuator reconfiguration.

Remark 4: It should be noted that only faults that do
not cause either an increase in V or a deterioration in
the minimum response speed will go undetected. Such
faults, however, do not harm stability or performance
and therefore require no corrective action. Note also
that this detection scheme can be used to detect both
partial and complete failures, as well as faults that do
not necessarily appear in the control actuators, as long
as they influence the evolution of the states.

5.3 Robust stability-based actuator reconfiguration

Following fault detection, the supervisor needs to de-
termine which of the available backup configurations
can be activated to maintain robust closed-loop stabil-
ity. Theorem 1 below describes how the fault detection
and control reconfiguration rules are integrated to en-
sure fault-tolerance in the closed-loop reduced system.

Theorem 1: Consider the approximate, finite dimen-
sional closed-loop system of Eqs.6-8 with k(0) = j ∈
K, φ ≤ φ∗ and x̄s(0) ∈ Ω̄j

s. Let T j
d := min{t :

V̇ (t) ≥ 0 or ‖x̄s(t)‖ > β(‖x̄s(0)‖, t)} be the earliest
time that a fault is detected, then the switching rule:
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k(t) =

{
j, 0 ≤ t < T j

d

ν 6= j, t ≥ T j
d , x̄s(T

j
d ) ∈ Ω̄ν

s

}
(11)

exponentially stabilizes the closed-loop system.

Remark 5: The switching law of Eq.11 ensures that
the fall-back actuator configuration that is activated
and implemented following fault detection is one that
guarantees closed-loop stability in the presence of
uncertainty and constraints. This is accomplished by
choosing a configuration whose robust stability region
contains the state at the time of switching. In the event
that more than one fall-back configuration satisfies
this condition, additional performance criteria (e.g.,
control effort) could be introduced to further discrim-
inate between the candidate control configurations.
Early detection of a fault enhances the chances of
taking corrective action. If a fault is not detected in a
timely manner, its destabilizing effect could drive the
state outside the stability regions of all the backup con-
figurations before the supervisor can take action. In
this case, stability cannot be preserved and a process
shutdown is unavoidable. Enlarging the stability re-
gions (by adjusting uk

max, ξk
a ) and/or increasing N , if

possible, helps minimize this possibility.

Remark 6: Owing to the characteristic, two time-
scale separation between the slow and fast eigenvalues
of the spatial differential operator of the PDE system
of Eq.1, the FD-FTC architecture designed on the ba-
sis of the reduced-order model continues to enforce
the desired robustness and fault-tolerance properties
when implemented on the actual process (infinite-
dimensional system), provided that the separation be-
tween the eigenmodes is sufficiently large. This fact
can be established rigorously using singular perturba-
tion techniques (see (Ghantasala and El-Farra, 2007)).

6. APPLICATION TO A NON-ISOTHERMAL
TUBULAR REACTOR WITH RECYCLE

We consider a non-isothermal tubular reactor where
an irreversible first-order reaction takes place. The
reaction is exothermic and a cooling jacket is used to
remove heat from the reactor. The outlet of the reactor
is fed to a separator where the unreacted species is
separated from the product and then fed back to the
reactor through a recycle loop. The dimensionless
process model is given by:
∂x̄1

∂t
= −∂x̄1

∂z
+

1
PeT

∂2x̄1

∂z2
+ BT BCe

γx̄1
1+x̄1 (1 + x̄2)

+ R1(r, x̄1f , x̄1(1, t)) + βT (b(z)u(t)− x̄1)
∂x̄2

∂t
= −∂x̄2

∂z
+

1
PeC

∂2x̄2

∂z2
−BCe

γx̄1
1+x̄1 (1 + x̄2)

+ R2(r, x̄2f , x̄2(1, t))
subject to the boundary conditions:

∂x̄1(0, t)
∂z

= PeT x̄1(0, t),
∂x̄1(1, t)

∂z
= 0

∂x̄2(0, t)
∂z

= PeC x̄2(0, t),
∂x̄2(1, t)

∂z
= 0

where x̄1 and x̄2 denote dimensionless temperature
and reactant concentration in the reactor, respectively,

x̄1f and x̄2f denote dimensionless inlet temperature
and inlet reactant concentration, respectively, PeT and
PeC are the heat and mass Peclet numbers, respec-
tively, BT and BC denote a dimensionless heat of
reaction and a dimensionless pre-exponential factor,
respectively, r is the recirculation coefficient (r = 1
corresponds to total recycle with zero fresh feed, and
r = 0 corresponds to no recycle), γ is a dimensionless
activation energy, βT is a dimensionless heat trans-
fer coefficient, Ri(r, x̄if , x̄i(1, t)) = δ(z − 0)((1 −
r)x̄if + rx̄i(1, t)), i = 1, 2, δ(·) is the standard Dirac
function, u is a dimensionless jacket temperature (cho-
sen to be the manipulated input), and b(z) is the actu-
ator distribution function. For PeT = PeC = 7.0,
BC = 0.1, BT = 2.5, βT = 2.0, γ = 10.0, r = 0.5,
x̄1f = x̄2f = 0, it can be verified that the operating,
open-loop steady-state is unstable (the linearization
around the steady-state possesses one real unstable
eigenvalue and infinitely many stable eigenvalues).

The control problem is to stabilize the reactor at
a spatially-nonuniform steady-state where the prod-
uct yield is desirable and the hot-spot temperature is
acceptable, by manipulating the jacket temperature,
u(t), which is subject to hard constraints and possi-
ble actuator failures. The control objective is to be
achieved in the presence of time-varying uncertainty
in the heat of reaction, i.e. BT −BTnom = θ(t), which,
for the purpose of simulations, is taken to be of the
form θ(t) = θb sin(t) with an upper bound on the un-
certainty of θb = 0.1BTnom (note that any other time-
varying bounded function can be used to simulate the
effect of uncertainty). To achieve the control objective,
two point control actuators, (ξA = 0, uA

max = 0.06),
(ξB = 0.1, uB

max = 0.06), are assumed to be available
with A being the primary actuator and B serving as
fall-back. Furthermore, we assume that a sufficient
number of point measurements of the temperature
along the reactor are available so that it is known with
sufficient accuracy.

For this system, we consider the first temperature
mode as the dominant one, and use Galerkins method
to derive an ODE that describes the temporal evolution
of the amplitude of the first eigenmode. This ODE
is then used for the synthesis of the controllers, the
characterization of the stability regions and the design
of the fault detection scheme. The synthesis details
are omitted due to space limitations. In all simulation
runs, the FD-FTC structure is implemented on a 400-
th order Galerkins discretization of the PDE model
(higher order discretizations led to identical results). It
was verified that the controller successfully stabilizes
the closed-loop system at the desired steady-state and
suppresses the effect of uncertainty when actuator A
is used without failures for all times.

To test the efficacy of the proposed FD-FTC structure,
failure is introduced into actuator A at t = 0.25 (see
dashed line in Fig.1(d)). Fig.1(c) shows that shortly
after this failure, the Lyapunov function (chosen to
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Fig. 1. Top: Reactor temperature profiles when actuator A fails
at t = 0.25 and (a) no failure compensation takes place,
and (b) actuator B is activated. Bottom: (c) Evolution of
the Lyapunov function in the presence (dashed) and absence
(solid) of faults, and (d) the manipulated input profiles for
actuator A (dashed) and actuator B (solid).

be a quadratic function of the first temperature mode)
ceases to decrease and begins to increase (dashed line)
relative to the expected evolution of V in the absence
of faults (solid line). From the result of Proposition 1,
this behavior is an indication of a diminished control
authority and is used to declare the failure of actuator
A at t = 0.46 (note that the slight detection delay
is a consequence of using only the Lyapunov decay
rate condition as the detection criterion – see Remark
3). Robust stability is then preserved by activation of
the backup actuator B (see the solid line in Fig.1(d))
whose stability region was verified to contain the first
temperature mode at the time of fault detection. The
result is depicted in Fig.1(b) which shows that, with
timely fault detection and reconfiguration, closed-loop
stability of the desired steady-state can be successfully
preserved in the presence of uncertainty and faults.
For comparison purposes, Fig.1(a) shows the loss of
stability when actuator A fails at t = 0.25 and no
corrective action is taken.
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