
8th    International  IFAC    Symposium  on
Dynamics and Control of Process Systems

 

DETECTION AND EFFECT OF
QUANTISATION IN DATA-DRIVEN PROCESS

ANALYSIS

Margret Bauer ∗ Sethabile Madolo ∗∗

∗Department of Electronic, Electrical and Computer
Engineering, University of Pretoria, South Africa

∗∗Anglo American, Anglo Technical Division, 45 Main
Street, Marshalltown 2107, South Africa

Abstract: Process data captured from the instrumentation of a plant is frequently
sampled and quantised. Quantisation can result in poor quality data if the
quantisation level is large. This paper investigates the effect of quantisation on
data-driven analysis methods, in particular the effect on first order statistics, the
power spectrum and on an oscillation detection method. Analysis shows that a
large quantisation level distorts the results obtained from data-driven process
analysis. Investigation shows that temperature measurements in particular are
prone to quantisation due to low accuracy. An automated algorithm is presented
that estimates the quantisation level from historical process data. Copyright
c©2007 IFAC
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1. INTRODUCTION

In modern process instrumentation, analogue
measurements are converted into digital form.
The analogue-to-digital-conversion (ADC) com-
prises three steps as shown in Figure 1 adapted
from (Bellan et al., 1996), namely sampling, quan-
tisation and coding. In the quantisation block,
the stored sample x[k] is translated into discrete,
equidistant amplitude levels that are separated
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Fig. 1. Analogue-to-digital conversion process
model.

by quantisation level ∆. The discrete levels are
then converted into binary code where the least
significant bit represents the quantisation level. In
a data historian, the discrete sampled, quantised
and coded data xc

Q[k] is stored.

Data-driven process analysis methods, such as
time series or frequency analysis methods, use
quantised data to gain insight into the process
operation, to diagnose faults and to identify dis-
turbances. If the quantisation level ∆ is set too
high then the quantised time trend xQ[k] will give
a distorted representation of the measurement
x[k]. Analysis of the quantised data might give
misleading results. Large quantisation levels can
originate from poorly adjusted sensors or sensors
with a low accuracy. These causes are common
even in modern data acquisition systems when,
for example, initially correct sensor calibrations
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might be unsuitable after changes in process con-
ditions.

Quantisation in the process measurement is also
an outside disturbance. Another unwanted effect
affecting the stored data and distorting the time
trend is data compression (Watson et al., 1998).
Compression algorithms are applied to the coded
data to save on storage cost but can result in a
poor representation of the actual measurement.
The impact of compression on data-driven analy-
sis methods has been studied recently (Thornhill
et al., 2004; Singhal and Seborg, 2005). Although
quantisation and its impact on analysis methods
has been studied in detail (Blum, 1995; Mas-
carenhas et al., 2000; Bellan et al., 1996), there
seems to be little attention to the effect of data
quantisation on data-driven analysis methods for
the process industries. This paper aims at closing
the gap by investigating the impact of quantisa-
tion in the process analysis context. Furthermore,
an automated detection method is proposed to
estimate the quantisation level ∆ from a time
trend and gives a measure for the severity of the
quantisation in the signal. If the data quality is too
poor due to high quantisation, the data should be
discarded and, in the long run, the sensor should
be re-calibrated. Information lost in the sampling
process cannot be restored.

This paper is organised as follows. First, the
background of quantisation methods and devel-
opments is discussed. In Section 3, the impact
of quantisation on data-driven methods is then
reviewed and new insights are gained. An auto-
mated quantisation detection method is proposed
and applied to industrial data in Section 4.

2. BACKGROUND

2.1 Applications of quantisation

Quantisation is an effect that occurs in almost all
electronic and electrical application. The world
we live in is analogue while all computational
operations and electronic systems are conducted
digitally. The information must be converted from
analogue to digital in a quantiser. Even before
the wide-spread introduction of computers, quan-
tisation was essential for telephony and commu-
nication theory and the research on quantisation
is dominated by those applications (Gray and
Neuhoff, 1998). The main objective in communi-
cation theory is to develop a quantisation tech-
nique with the lowest loss of accuracy. The quality
of the quantizer is measured by the accuracy of
the resulting reproduction in comparison to the
original.

In other engineering fields, an objective is to deal
with and eliminate quantisation effects that have
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Fig. 2. Five industrial examples of quantised data
in measurements (PV1-PV5 from top to bot-
tom).

been introduced by analogue-to-digital conver-
sion. A well researched area is the detection of ob-
jects in quantised two- and three-dimensional data
for sonar and radar applications (Blum, 1995). In
control theory, the presence of quantisation has
been recognised since the introduction of com-
puter control technology and many of the conse-
quences, such as instability and round-off errors,
have been studied (Böhm et al., 1994). Far less at-
tention has been paid to the effect of quantisation
for time series analysis for the purpose of process
analysis and monitoring.

2.2 Quantisation in process measurements

Industrial process data is captured from the sen-
sors at the plant and usually quantised by the
ADC in the sensor. If the quantisation level is
set to high then the logged data will show strong
indications of quantisation. Figure 2 shows five
process measurements that exhibit clear quanti-
sation signatures. These measurements stem from
industrial processes at Anglo American and are
normalized to zero mean and unit variance. Only
discrete amplitude levels are adopted and step-like
jumps between those levels can be observed. For
example, in the first time trend PV1 only 6 dis-
crete quantisation levels are adopted for all shown
200 time samples. The linearisation effect gives
similar signatures to some compression algorithms
(Thornhill et al., 2004). Analysing quantised time
trends as shown in sample time trends will result
in the loss of information and in some instances
will give misleading results as will be discussed in
the following sections.

The frequency with which quantisation occurs
in industrial data is investigated in a mini-case
study. A total of 250 measurements from various
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Fig. 3. Transfer functions of uniform midtread
midrise quantisers.

plants and companies were inspected for quan-
tisation. Table 1 shows the percentage of mea-
surements that show the effect of quantisation in
the time trends according to measurement type
(Bauer, 2005). It can be observed that the tem-
perature measurements are more prone to quanti-
sation than any other measurement types. In the
case study, 54% of the temperature measurements
showed some extent of quantisation. In industrial
processes, temperature is usually measured with
digital thermometers and thermostats. The accu-
racy of these sensors lies in the region of ±0.50C
(DalSemi, 2006). As the temperature is crucial for
the reaction in many processes, it will vary only
around a few degrees. The low accuracy of the
temperature sensor thus results in quantisation.

3. IMPACT OF QUANTISATION ON
DATA-DRIVEN METHODS

The most commonly used quantisers are uniform
midtread and midrise quantisers which are both
symmetrical around the origin. The transfer func-
tions of those quantisers are shown in Figure 3.
The transfer function of a uniform midtread quan-
tisation is as follows.

xQ = ∆
[ x

∆

]
(1)

where [ · ] represent rounding to the next integer
and ∆ is the quantisation level. The quantisation
error is defined as the difference between the
original and the quantised sample e = xQ−x. The
smaller the quantisation level ∆, the smaller the
quantisation error e and the better the quantiser.

Temperature 54%
Pressure 23%
Flow 14%
Level 11%

Total 28%

Table 1. Percentage of quantised mea-
surements in industrial data out of a

total of 250 measurements.
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Fig. 4. Power spectrum of a quantised sine wave.

3.1 Mean and variance

The quantisation error e of a quantiser with quan-
tisation level ∆ is usually modelled by an additive,
input independent noise uniformly distributed in
[−∆/2;+∆/2]. The mean µe and variance σ2

e of
the quantisation error can thus be derived from
the uniform distribution.

µe =

+∆∫

−∆/2

x

∆
dx = 0; σ2

e =

+∆∫

−∆/2

x2

∆
dx =

∆2

12
(2)

Since the quantisation error is regarded as an ad-
ditive noise source the mean value µx and the vari-
ance σ2

x of the unquantised data are approximated
from the quantised data as follows (Carbone and
Petri, 1998).

µx ≈ µxQ ; σ2
x ≈ σ2

xQ
− ∆2

12
(3)

Thus, the larger the quantisation error, the larger
the impact of the quantisation error on the vari-
ance σ2

x. The approximation for the mean µx

is only applicable if the quantisation level ∆ is
sufficiently small compared to the standard de-
viation of the input signal, that is, ∆ ¿ σx

(Chiorboli, 2003). This is usually assumed for a
quantisation level by a factor of ten smaller than
the standard deviation. If this is not the case, then
the quantisation depends strongly on the offset
position of the quantiser which can vary between
−∆ and +∆. It is therefore important to know the
size of the quantisation level to decide whether the
mean and variance can be estimated from Eq. 3
or if the time trend should be discarded.

3.2 Power spectrum

The power spectrum gives insight into the fre-
quency contained in a time trend x and is ob-
tained from absolute value of the Fourier trans-
form |X(jωn)|. Here, n are the discrete frequency
bins. The impact of quantisation on the power
spectrum has been previously discussed in (Bellan
et al., 1996). Quantisation results in step-like fea-
tures in the time trend. Steps in the time trend
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will be result in additional terms over all frequen-
cies in the power spectrum. In particular, high
frequencies which represent fast changes will be
present in the spectrum after quantisation.

For example, a sinusoidal time trend xS [k] =
A sin(2πk/T ) with amplitude A and oscillation
period T and a midtread quantiser with quanti-
sation level ∆ are considered. Bellan et al. (1996)
show that the quantisation error spectrum con-
sists of periodic repetitions. Figure 4 shows the
power spectrum of a sinusoidal time trend xS [k].
The additional frequency peaks resulting from the
quantisation are separated by a distance L:

L = 2πA/∆. (4)

The smaller the quantisation level ∆, the fewer
additional frequency peaks there will be in the
power spectrum at larger distances L.

3.3 Oscillation detection

Common disturbances in the time trend that give
particular rise for concern are oscillations. Oscilla-
tions can be caused by inappropriate tuning or by
instrumentation problems. A real-time oscillation
detection method presented by Hägglund (1995)
and modified in (Thornhill and Hägglund, 1997)
investigates the time between zero-crossings and
thus determines whether a time trend exhibits
oscillation. The main computation of the statistic
is the calculation of the integrated absolute error
(IAE) defined by the following expression:

IAEi =
κi+1∑
κ=κi

|Y [κ]| (5)

where Y [κ] is the autocovariance of the controller
error signal at time shift κ. Furthermore, κi and
κi+1 are the times of successive zero crossings
of Y [κ]. The autocovariance is used instead of
the time trend to remove high frequency noise
effects. It measures the similarity of a signal with
a time-shifted version of the same signal and can
be derived from the process variable time trend
x with N samples. An interval between two zero
crossings is defined as ∆κ = κi+1−κi. Regularity
is assessed by the use of a statistic q which is
defined as follows:

q =
µ̂R

σ̂R
(6)

where the ratio R between adjacent intervals k is
as Ri = ∆κi+1/∆κi and from which the average
value µ̂R as well as the standard deviation σ̂R are
estimated. For most time trends, the oscillation
can be positively identified if the regularity index
exceed the 3-σ threshold (q > 3). The oscillation
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Fig. 5. Oscillatory time trend x[k], autocorrelation
function Y [k] and integrated absolute error
IAEi for oscillation detection.
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Fig. 6. Regularity q and period of oscillation Tp

as function of quantisation level ∆.

period of the signal can be calculated as follows
from the detected intervals between the zero-
crossings Tp = 2µ̂∆κ.

To test the impact of quantisation on the oscil-
lation detection mechanism, an oscillating time
trend of an industrial data set is quantised into
increasingly larger intervals. Figure 5 shows the
sample time trend x[k], the autocorrelation func-
tion Y [κ] and the integrated absolute error (IAE)
between the zero crossings of Y [κ]. Since the peaks
of the IAE appear in regular intervals, the regu-
larity index exceeds the threshold q = 7.5 > 3.
The period of oscillation is Tp = 8.4.

The impact of quantisation on oscillation detec-
tion is investigated by quantising the input se-
quence x[k] by an increasing level ∆. The effect
of quantisation on the regularity index q and the
period of oscillation Tp is shown in Figure 6. Even
for a large quantisation level ∆, the period of os-
cillation is detected quite accurately. The effect is
noticed in the detected oscillation period Tp only
if ∆ exceeds 0.5σx. The brief analysis shows that
the oscillation index is robust to quantisation.
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Fig. 7. Histogram of quantised data reveals quan-
tisation level ∆ (example for data trend PV1
from Figure 2).

4. AUTOMATED QUANTISATION
DETECTION

Since the human sensory system is analogue it
can easily differentiate between quantised and un-
quantised data. For example, visual inspection of
the time trend in Figure 2 reveals the effect of
quantisation. In this section, an automated algo-
rithm is presented that identifies the quantisation
level from historical data.

4.1 Algorithm

After quantisation the data samples adopt only
discrete amplitude levels. The amplitude levels
can be seen when constructing the histogram
of the process variable from historical data.
Histograms approximate the probability density
function (PDF) of a time trend by counting the
number of measurements that lie within a mea-
surement interval. Histograms are also referred
to as the relative frequency. Figure 7 shows the
histogram of the first time trend from Figure 2.
A large number of amplitude bins will give a
better resolution but a more computational effort
is required. In the example, the number of bins is
set to 10,000.

The quantisation detection algorithm is similar
to the oscillation detection method described in
Section 3.3, only that the regularity analysis is
applied to the histogram and not to the autocor-
relation function. Assuming a uniform quantiser,
the regularity of peaks in the histogram, as shown
in Figure 7 is an indication of quantisation. An
interval between two peaks is therefore defined as
∆x = x[i + 1] − x[i]. The regularity of the peaks
can be expressed in a regularity index similar to
Equation 6:

q∆x =
µ̂∆x

σ̂∆x
(7)

were µ̂∆x and σ̂∆x are the mean and standard
deviation of the interval between two peaks in the

Variable q∆x ∆̂/σx

PV1 76.1 0.88
PV2 10.1 0.36
PV3 74.8 0.35
PV4 87.5 0.38
PV5 9.2 0.64

Table 2. Regularity index and quantisa-
tion level of time trends from Figure 2.

histogram. A similar 3 − σ detection threshold
as used in the oscillation detection method can
be applied, so that the signal is considered as
quantised if q∆x > 3. The quantisation level can
be approximated by the average interval ∆x:

∆̂ = µ̂∆x. (8)

A comparison of the detected quantisation level
∆̂ to the standard deviation σx of the data gives
an indication of the severity of the quantisation.
When estimating mean and variance of quantised
data as discussed in Section 3.1, the quantisation
level should be only a tenth of the standard devi-
ation ∆̂ < 10σx. In some industrial applications,
the coder adds noise to the quantised data so
that some samples will not fall on the discrete
amplitude levels though the majority does. In this
case, a threshold pth can be introduced above
which the peaks in the histogram are registered
as xi.

4.2 Quantisation detection examples

The quantisation detection algorithm was applied
to the normalised industrial data shown in Figure
2. The resulting regularity index q as well as the
estimated quantisation level ∆̂ of those five time
trends are listed in Table 2. For all five PVs the
regularity index q∆x lies above the 3σ threshold
and indicate quantisation or all PVs. PV1 exhibits
the largest quantisation level of ∆̂ = 0.88σx but
all time trends have a large quantisation level
compared to the standard deviation of the time
trend. The estimation of mean and variance of
this signal should be considered according to the
guidelines given in Section 3.1.

There are, however, several instances when the
quantisation detection algorithm might not give
the desired results. For example, a constant value
resulting from a dead sensor will be problematic to
identify. A test for zero variance should therefore
be conducted first. Also, the data might be nearly
constant when a time frame is selected with no
or little variation. Pre-processing the data and
selecting a representative time frame is therefore
necessary. A further shortcoming of the algorithm
is that it does not acknowledge that most process
variables follow a Gaussian PDF, as for example
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the time trend of PV1 in Figure 7. The histogram
peaks on the outer left and right side of the
bell-shaped curve might not all be represented
leaving gaps in the otherwise regular histogram.
It is therefore advisable to focus on the dominant
peaks by introducing a detection threshold. Only
peaks above the threshold are considered for the
regularity analysis.

In some instances, the quantisation is not caused
by the analogue-to-digital conversion but is part
of the actual process operation. For example,
an electric pump might operate at certain speed
levels. The flow rate after the pump will show
only these discrete levels though the measurement
itself might not be quantised. It will be impossible
to tell from the time trend that a measurement
is ‘deliberately’ quantised and expert knowledge
has to be used to identify the difference between
a step-wise function and a quantised time trend.
Expert knowledge from the operator or process
engineer rather than an automated algorithm is
required to tell the difference between unwanted
and real quantization.

5. CONCLUSIONS

In this paper, the effect of quantisation on data-
driven process analysis methods has been dis-
cussed. Quantisation occurs in industrial process
data due to inadequate sensor calibration or low
accuracy in sensor. A mini case study of 250 in-
dustrial time trends showed that 28% of the mea-
surements exhibit quantisation signatures. Mean
and standard deviation of a time trend as well as
its power spectrum are affected significantly by
quantisation. A frequently used oscillation detec-
tion method, on the other hand, is robust when
analysing quantised data.

A procedure was introduced for detecting the ef-
fect of quantisation in historical data. The proce-
dure is similar to a popular oscillation detection
method and establishes the quantisation level as
well as a regularity index that gives an indication
of the significance of the quantisation in the time
trend. With the proposed method, process data
can be tested for quantisation and a decision can
be made whether to keep or discard the data for
process analysis.
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