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Abstract: Support region selection is a key step of two-dimensional dynamic PCA 
modeling for batch process dynamics, as it can affect the accuracy of the model and the 
efficiency of monitoring and fault diagnosis. In this paper, an automatic method for 
support region selection is developed. This data-based method can be applied universally 
on different batch processes without any prior process knowledge. Simulation shows that 
developed method has good application potentials for both monitoring and fault diagnosis. 
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1. INTRODUCTION 

Nowadays, batch processes are widely applied in 
industrial manufacturing to manufacture high-value-
added products. To ensure operation safety and 
product quality, the multivariate statistical monitoring 
methods, such as principal component analysis (PCA) 
and partial least squares (PLS), have been extended 
from continuous processes to batch processes for 
online monitoring (Nomikos and MacGregor, 1994; 
Nomikos and  MacGregor, 1995; Wold, et al., 1996; 
Rännar, et al., 1998; Lu, et al., 2004). However, these 
methods all assume batch independency for the 
process. In fact, dynamics are inherent characteristics 
of batch processes. In some cases, such dynamics 
exist not only within a particular batch, but also from 
batch to batch. Causes of batch-wise dynamics, for 
example, are slow property changing of feed stocks, 
process characteristics drift, process controller 
designed in a way of run-to-run adjustment, effects of 
slow response variables, and so on. All these are 
common in batch processes. To take process 
dynamics into consideration, several modeling 
methods have been developed. Batch dynamic 

principal component analysis (BDPCA) (Chen and 
Liu, 2002) captures within-batch dynamic 
information, while the lifted state space model (Lee 
and Dorsey, 2004) and the method incorporating 
prior batches information into MPCA model building 
(Flores-Cerrillo and MacGregor, 2004) concern 
batch-wise dynamics. 

To build both types of dynamic information into a 
single model simultaneously, a two-dimensional 
dynamic principal component analysis (2-D-DPCA) 
model (Lu, et al., 2005) has been developed by the 
authors. This model has a parsimonious 2-D structure 
which is easy to build and can provide efficient 
online faults detection. Small changes in correlation 
or process drifts can both be detected effectively. 
However, a remaining problem is on the 
determination of support region for such a 2-D-
DPCA model. In our previous work, the support 
region (ROS) is assumed to be limited in the quarter 
plane and have a regular shape. This assumption may 
not be reasonable for certain batch processes. In this 
paper, the problem of ROS determination for 2-D-
DPCA model is presented and resolved. 

The article is organized as following. In section 2, 
the problem of ROS selection is illustrated. Then a 
data-driven method that can determine the ROS 
automatically is presented in section 3. In the section 
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4, simulations are given to compare the monitoring 
and diagnosis results between 2-D-DPCA models 
with quarter plane ROS and with auto-selected ROS. 
Finally, a conclusion is given in section 5 to 
summarize the paper. 

2. PROBLEM DESCRIPTION 

2-D structure has already been widely applied in data 
filtering, image processing and some other areas. 2-
D-DPCA model is the first 2-D method to model 
batch processes for process monitoring. It combines 
lagged regression model structure and PCA method to 
capture both 2-D dynamics and cross-correlation 
information among variables. To build such a 2-D 
model, a key step is to choose the support region 
which is also called the region of support (ROS) or 
the prediction region. The ROS should be a proper 
selection of a neighborhood that can provide a good 
prediction. In batch processes, all relationships are 
causal, so this neighborhood is in the past of the 
current sample. In our previous work (Lu, et al., 
2005), the ROS is assumed to be within a quarter 
plane and restricted in a rectangular shape, which 
means that the current value of a variable ( , )jx i k  is 
to be predicted by a region including its past values in 
time direction , , …, ( , 1)jx i k ( , 2)jx i k

( , )jx i k n , its past values in batch direction 

( 1, )jx i k , ( 2, )jx i k , …, ( ,j )x i m k ,  and 
together with the values in the cross direction 

, …, ( 1, 1)jx i k ( ,j )x i m k n , where ( , )jx i k
is process measurement of variable j at sampling 
interval k in batch run i (i=1,..,I; j=1,…J; k=1,…,K). 
The order pair (m,n) of the support region was 
selected by calculating some index, such as Akaike 
information criterion (AIC), minimum descriptive 
length (MDL) and minimum eigenvalue (MEV) 
(Aksasse and Radouane, 1999), based on the implied 
equivalence between 2-D-DPCA model and 2-D AR 
model. 

However, the quarter plane assumption of the ROS 
may not be an optimal or proper choice. Although the 
quarter plane is widely used in image processing and 
other areas, it dose not mean it is proper in batch 
process modeling. The ROS may not locate in the 
quarter plane. Take injection molding process as an 
example. The mold temperature is a slow response 
process variable. The temperature values of the future 
time intervals in the past batches can give better 
prediction of the current sample than the variable 
values in the quarter plane. This suggests that the 
ROS of a batch process may be irregular and 
complicated. Since batch process dynamics may be 
caused by different reasons and each process could 
have some special characteristics of its own, it is hard 
to use a uniform ROS shape for all batch processes. If 
process cross/auto-correlation characteristics are 
known, the support region can be chosen based on 
such prior knowledge. However, this prior 
information is unlikely available for most batch 
processes. So, a complete data-driven method for 

ROS determination is needed to determine 
automatically a proper ROS including its shape and 
orders. 

3. METHOD FOR SUPPORT REGION (ROS) 
AUTO-SELECTION 

A proper ROS should include the necessary past data 
to provide good prediction of variables’ current 
values. In a sense, ROS determination is a problem 
similar to the task of selecting proper independent 
variables to predict current sample in a prediction 
model development. All past samples are candidates 
of such independent variables. The task is to choose a 
reasonable sub-group of them in a tidy structure to 
provide good prediction. 

For model regression, many commercial programs, 
which use stepwise regression, have been developed 
to determine the regression variables according to 
certain criterion, such as AIC. Several methods have 
also been developed for variable selection when 
multicollinearity is present (Gauchi and Chagnon, 
2001; Lazraq, et al., 2003; Chong and Jun, 2005). 

Enlightened by the variable selection problem, a 
data-driven method for ROS auto-selection is 
designed. A neighborhood of the current sample is 
chosen as the candidate region of ROS which can be 
called initial ROS. All samples in this region can be 
regarded as candidate independent variables for the 
prediction model of current sample which is regarded 
as the dependent variable in the model. The initial 
ROS choosing should be sufficiently large to contain 
the proper ROS as a subset. Since the initial ROS is 
larger than the proper one, the target ROS can be 
obtained by eliminating unnecessary independent 
variables. Therefore, backward elimination is 
proposed to be conducted iteratively. In each run, a 
regression model is built to relate the remained 
candidate independent variables to current sample’s 
value as the regression function. An index, which is a 
model evaluation criterion, is calculated at each 
iteration run. One independent variable is eliminated 
from the candidate region based on the model 
coefficients at each iteration. In the end, the best 
choice of the ROS is determined based on the 
comparison of the index values calculated during the 
iteration. Details of the method are given in the next. 

For the initial ROS selection, the candidate region 
should be sufficiently large, so that the entire final 
ROS should completely be contained as pointed out 
earlier. On the other hand, it should not be too big in 
order to control the computation burden in the later 
steps. An initial ROS is proposed to satisfy the above 
requirements. A common property of the lagged 
variables in the final proper ROS is that all of them 
are significantly correlated with current sample so 
that they can provide good prediction. The 
correlation information is provided by the auto- and 
cross-correlation functions. When there is a 
significant correlation, the value of function is near 
one, otherwise, it towards zero. What we can do is to 
calculate the values of auto- and cross-correlation 
functions, and find out the past region that contains 
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significant correlations to the current sample and take 
this region as the initial ROS. 

In iterative backward eliminations, one independent 
variable corresponding to the smallest regression 
coefficient is eliminated from the candidate region in 
each run. The basis of doing so is that the coefficient 
of each independent variable denotes its contribution 
to dependent variable if all variables are normalized. 
So in each run, a variable contributing least to the 
prediction can be eliminated from the candidate 
region. This iteration is done until there are only one 
variable retained. 

An index is used as a criterion to evaluate the 
regressions in each iteration. This index could be AIC, 
MDL, or any other indices used in variable selection. 
The AIC criterion is proposed by Akaike (1974) and 
can be calculated from the equation below, 

                    2ˆAIC( ) log( ) 2k

k
k

N
,                 (1) 

where 2ˆ
k  is the prediction error variance estimated 

from the regression model, k is the number of 
independent variable retained in the candidate region 
for building the regression, and N is the number of 
observations. Based on AIC criterion, the smaller 
AIC(k) is, the better is the prediction. So the retained 
independent variables and k corresponding to the 
smallest AIC(k) is chosen to constitute the proper 
ROS and the number of lagged variables in the ROS. 
One important issue should be noted is that AIC often 
leads to over-fitting that results in a bigger ROS than 
the proper one. So if the results of equation (1) decay 
slowly after some iterations, the lagged variables 
retained in the candidate region corresponding to that 
run may be selected as the most proper ROS. 

The detailed procedures of ROS auto-selection are 
listed below. 

1. In the past half plane, select a candidate region 
(initial ROS) which is large enough and includes the 
target ROS to be determined. This initial selection 
can be based on prior process knowledge or auto- and 
cross-correlation functions between current sample 
and past measurements as introduced before. Fig. 1 
shows the initial ROS for process variable jx  which 
can be an irregular shape in the half plane including 
data points of ( , 1)jx i k , , …, ( , 2)jx i k

0( , ( ))jx i k n j , 1( 1, ( ))jx i k r j ,

, …, 1( 1, ( ) 1)jx i k r j ( 1, )jx i k ,

, …, ( 1, 1)jx i k 1( 1, ( ))jx i k n j ,…, 

( )( ( ), ( )j m

Fig. 1. Illustration of initial ROS and proper ROS 

(i-v)th batch included in the initial ROS, and rv(j) is 
the maximum number of future sampling intervals of 
variable j in the (i-v)th batch included in the initial 
ROS.
2. Based on the chosen candidate region, augment 
data matrix as: 

                            

1, 1

1,

,

,

m n

m K r

i k

I K r

X

X

X

X

X ,                          (2) 
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max( (1), (1), , (1), , ( ), ( ),
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m m m j m J

) )j( )( ( ), ( )j mx i m j k n j ,

where ( , )jx i k  means the value of variable j at the kth 
sampling time interval in batch i, m(j) is the 
maximum number of lagged  batches of variable j
included in the initial ROS, nv(j) is the maximum 
number of past sampling intervals of variable j in the  
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3. Normalize X and make each column has zero mean 
and unit variance. 
4. Choose a variable hx  where h=1,…,J and J is the 
number of process variables and augment data as: 

                

( 1, 1)

( 1, )

( , )

( , )

h

h

h

h

x m n

x m K r

x i k

x I K r

hY .                       (3) 

5. Normalize Yh to zero mean and unit variance. 
6. Take X as the matrix of independent variables, Yh
as the matrix of dependent variable, and build a 
regression model between X and Yh.
7. Calculate and store the value of evaluation index 
for this regression model. The index can be AIC 
(equation (1)) or other indices used in variable 
selection. 
8. Eliminate a column in X corresponding to the 
smallest coefficient in the regression model. 
9. Return to step 6 until all columns in X have been 
eliminated.
10. Compare all the values of evaluation index 
calculated and find the one indicating the most proper 
model. If AIC indices are used, to overcome the over-
fitting problem, the one closer to the minimum value 
with fewer independent variables is selected. 
11. Check X corresponding to the best model 
determined in step 10. The remaining columns of X
give the most proper ROS of hx . The selected proper 

ROS of hx  is shown in Fig. 1. Similar to initial ROS, 
the proper ROS may have irregular shape in the past 
half plane, which includes ( , 1)jx i k ,

, …, ( , 2)jx i k 0( , ( ))jx i k q j , 1( 1, ( ))jx i k f j ,

, …, 1( 1, ( ) 1)jx i k f j ( 1, )jx i k , ( 1, 1)jx i k ,

1( 1, ( ))jx i k q j , …, ( )( ( ), ( )j p )jx i p j k f j , …, 

( ( ),j )x i p j k , ,( ( ), 1jx i p j k )

)j( )( ( ), ( )j px i p j k q j , where p(j) is the maximum 
number of lagged batches of variable j included in the 
proper ROS, qv(j) is the maximum number of past 
sampling intervals of variable j in the (i-v)th batch 
included in the proper ROS, and fv(j) is the maximum 
number of future sampling intervals of variable j in 
the (i-v)th batch included in the proper ROS. 
12. Return to step 4. Choose another hx , and find its 
support region.
13. When every variable’s support region is 
determined, the combination of them is the complete 
ROS to be used in 2-D-DPCA model building. 

After the complete proper ROS is determined, the 
data matrix can be augmented as a combination of 
current sample and samples in the support region. 
Then 2-D-DPCA is performed on this augmented 

matrix. The formulas of PCA modeling, data 
reconstruction, SPE and corresponding control limits 
calculation have been reported in our previous work 
(Lu, et al., 2005). 

4. SIMULATION RESULTS 

In this section, 2-D-DPCA monitoring and diagnosis 
efficiency with auto-selected support region (ROS) is 
compared with a previous quarter plane ROS for a 
batch process with 2-D dynamics. The process model 
is given as below. 

, (4) 

1 1 1

1 1

2 2 2

2 2

3 3 1

2 3

4

( , ) 0.5* ( -1, 1) 0.8* ( , -1)

           - 0.3* ( -1, )

( , ) 0.44 * ( -1, 1) 0.67 * ( , -1)

           - 0.11* ( -1, )

( , ) 0.4 * ( , -1) 0.25* ( , )

           0.35* ( , )

( ,

x i k x i k x i k

x i k w

x i k x i k x i k

x i k w

x i k x i k x i k

x i k w

x i k 4 1

2 4

) 0.8* ( , -1) 0.53* ( , )

           - 0.33* ( , )

x i k x i k

x i k w

where i is the batch index; k is the time index; 1x  and 

2x  are two independent signals with dynamics in 

time and batch directions; 3x  and 4x  are function of 

1x , 2x  and their own values at one step before in the 

current batch;  are Gaussian noises 
with variance 0.01. 100 batches data are generated 
and there are 200 samples in each batch. 

( 1, 2, 3, 4)jw j

The ROS is determined with the proposed auto-
selection method. The complete ROS includes 

1 ( , 1)x i k , 1 ( 1, 1)x i k , 1 ( 1, )x i k , 2 ( , 1)x i k ,

2 ( 1, 1)x i k , 2 ( 1, )x i k , 3 ( , 1)x i k  and 

4 ( , 1)x i k , which agree with the process. The 2-D 
AIC method is also used to do the same job based on 
the quarter plane assumption of the ROS. The quarter 
plane selected ROS is made up of 1 ( , 1)x i k ,

1 ( 1, 1)x i k , 1 ( 1, )x i k , 2 ( , 1)x i k ,

2 ( 1, 1)x i k , 2 ( 1, )x i k , 3 ( , 1)x i k ,

3 ( 1, 1)x i k , 3 ( 1, )x i k , , 4 ( , 2)x i k 4 ( , 1)x i k ,

4 ( 1, 2)x i k , 4 ( 1, 1)x i k  and 4 ( 1, )x i k .

Two 2-D-DPCA models are built based on these two 
different choices of ROS. To determine the number 
of PCs retained in the model, cross-validation 
method (Wold, 1978) is used. 4 PCs are retained in 
the 2-D-DPCA model with auto-selected ROS while 
2-D-DPCA model with quarter plane support 
assumption retains 5 PCs. Both models can explain 
more than 99 percent of variations and there is no 
significant correlation but only noise retained in 
residuals since retained PCs capture most dynamics. 
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With the 2-D-DPCA model of normal operation, the 
control limits of SPE-statistic can be calculated based 
on a weighted 2 distribution assumption and be used 
to monitor future batches. 

To check the models’ ability of monitoring and 
diagnosis, a change in variable correlation structure is 
generated to simulate the fault. From batch 61, 
variable 2x  is formulated as: 

. (5) 2 2 2

2 2

( , ) 0.1* ( 1, 1) 0.67 * ( , 1)

           0.05* ( 1, )

x i k x i k x i k

x i k w

From Fig. 2, it can be found that this change in 
magnitude is quite insignificant although there are 
some differences between the parameters of the two 
models. 

The monitoring results are shown in Fig. 3 and 4, 
respectively for auto-selected ROS and quarter plane 
ROS. Though the fault is insignificant, both 2-D-
DPCA methods can detected the fault efficiently from 
batch 61 within which batch the fault begins. But the 
model with auto-selected ROS dose the detection job 
much better while the model with quarter plane ROS 
only give alarms at a few samples. Besides this, the 
difference in fault diagnosis results tells us another  

Fig. 2. Faulty trajectories of variable x2 with changed 
correlation structure (Solid lines: normal 
trajectories; Dash lines: faulty trajectories) 

Fig. 3. Monitoring for a fault of correlation structure 
changing by 2-D-DPCA with auto-selected ROS 
(Solid line: 99% control limit; Dash line: 95% 
control limit) 

Fig. 4. Monitoring for a fault of correlation structure 
changing by 2-D-DPCA with quarter plane ROS 
(Solid line: 99% control limit; Dash line: 95% 
control limit)

Fig. 5. SPE statistic contribution plot of Batch 61 
based on 2-D-DPCA with auto-selected ROS 
(Solid line: 99% control limit; Dash line: 95% 
control limit) 

Fig. 6. SPE statistic contribution plot of Batch 61 
based on 2-D-DPCA with quarter plane ROS 
(Solid line: 99% control limit; Dash line: 95% 
control limit)

important benefit of the 2-D-DPCA method with 
auto-selected ROS. The contribution plots for SPE of 
the batch 61 with control limits are drawn in Fig. 5 
and 6, respectively for the method with auto-selected 
ROS and quarter plane ROS, based on the 
Westerhuis method (Westerhuis, et al., 2000). The 2-
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D-DPCA model with auto-selected ROS shows 
clearly and correctly that the fault with variable 2x ,

while the one with quarter plane mistakenly takes 3x
as the faulty one. 

In summary, incorrect structure of ROS can give 
distorted correlation information among process 
variables. This not only increases the chances of miss 
alarm, but also affects diagnosis results. 2-D-DPCA 
with auto-selected ROS solves such problems nicely, 
and this method is completely data-driven without the 
requirement of any prior process knowledge. 

5. CONCLUSION 

2-D-DPCA is a modeling method that can capture 
both time-wise and batch-wise dynamics of batch 
processes. Proper selection of support region (ROS) 
has shown to be important to monitoring efficiency 
and diagnosis accuracy. The idea of variable selection 
has been adopt in this work to solve the ROS 
selection problem nicely.
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