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Abstract: This paper addresses the problem of extremum-seeking (real-time
steady state optimization of dynamic systems via control of the gradient) under
constraints. Though gradient projection on active constraints has the advantage
of providing better performance, it has not been utilized in the context of
extremum-seeking due to difficulties in gradient estimation and drift from active
constraints. In this paper, the gradient of the objective and the constraints
are calculated simultaneously using the recently proposed multi-unit framework.
Also, a correction term is added to handle the drift from active constraints.
The theoretical concepts are illustrated on the optimization of a simple reactor.
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1. INTRODUCTION

Process control methods typically deal with the
problem of bringing a system to a desired set point
and maintaining it therein. However, the real goal
is often to optimize a certain performance cri-
terion. For this, a model is built and is used to
solve the optimization problem numerically. The
model being just an approximation, the operat-
ing conditions computed numerically will only be
sub-optimal for the real system. To handle this
issue, the available measurements can be used to
update the model, and the updated model can
be optimized again. This model update can either
mean adapting the parameters of a first-principles
model (Marlin and Hrymak, 1997) or adding cor-
rective terms (Desbiens and Shook, 2003).The two
steps of model update and numerical optimization
are repeated as often as needed.

When the objective function is convex, extremum-
seeking control (Leblanc, 1922; Guay and Zhang,
2003) is another option for real-time optimization
where controllers are designed so as to satisfy
the necessary conditions of optimality. In the
unconstrained case, this corresponds to pushing
the gradient to zero.

The various extremum-seeking methods differ in
the way in which the gradient is estimated. Per-
turbation methods (Leblanc, 1922; Krstic and
Wang, 2000) use an input perturbation and com-
pute the gradient using a correlation between the
input and output variations. Adaptive extremum-
seeking methods (Guay and Zhang, 2003) calcu-
late the gradient based on a process model that
is updated using available on-line measurements.
In multi-unit optimization (Srinivasan, 2006), the
gradient is computed as a finite difference between
the outputs of multiple units with slightly differ-
ent input values.
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Though constraints play an important role in op-
timization, only a few papers consider constraints
in the context of extremum-seeking (Dehaan and
Guay, 2005). Therein, barrier functions are used to
convert a constrained optimization problem into
an unconstrained one. The current paper takes an
alternate path through the projection on active
constraints. This concept has the advantage of
being on the active constraint, and thus leads to
better performance. Though this idea is relatively
old (Rosen, 1960), it has not been used in the
context of extremum-seeking due to: (i) gradient
with respect to the constraints are required, (ii)
approximate gradients lead to deviation from the
active constraint, and (iii) the resulting controller
is hybrid in nature.

In this paper, the multi-unit technique is used
for gradient computation, which can provide the
gradients of the cost and the constraints simulta-
neously, with no extra effort. Secondly, the con-
troller is designed such that the active constraints
are met even if the gradients are approximate.
Thirdly, the convergence could be established de-
spite its hybrid nature.

The paper is organized as follows. Section 2
presents the extremum-seeking using perturba-
tions and the barrier function approach as a point
of comparison. In Section 3, multi-unit optimiza-
tion is reviewed and the projection approach is
elaborated in Section 4. Section 5 presents an
example and Section 6 concludes the paper.

2. EXTREMUM-SEEKING CONTROL USING
PERTURBATIONS

2.1 Optimization problem formulation

Consider a stable dynamic system with state x ∈
<n, input u ∈ <m that has to be operated so as
minimize a convex function J(x, u):

min
u

J(x, u) (1)

s.t. ẋ = F (x, u) ≡ 0, S(x, u) ≤ 0 (2)

where F (x, u) is the function describing the dy-
namics of the system and S(x, u) the inequality
constraints. The necessary conditions of optimal-
ity are:

dJ

du
+ µT dS

du
= 0 (3)

µT S = 0 ⇒ µj = 0 or Sj = 0. (4)

where µ are the Lagrange multipliers and the total
derivatives are given by,

dX

du
=

(
∂X

∂u
−

∂X

∂x

(
∂F

∂x

)
−1

∂F

∂u

)
(5)

where X is either J or S. Note that when a
constraint is active, the corresponding Lagrange
multiplier µ has a positive value, while it is
zero when the constraint is inactive. This hybrid
nature makes its resolution difficult.

An alternative is to transform the constrained
problem into an unconstrained one using barrier
functions (e.g. (Vassiliadis and Floudas, 1997)).

min
u

J̄(x, u) = J(x, u) − α
∑

i

log(−(Si(x, u))

s.t. ẋ = F (x, u) ≡ 0 (6)

The value of α will decide the distance from the
constraints.

2.2 Extremum seeking

As in the steepest descent method for numer-
ical optimization (Nocedal and Wright, 1999),
extremum-seeking makes the process evolve in the
opposite direction of the gradient. But instead of
using the iteration index as in numerical methods,
the real time is used here. The extremum-seeking
control law is given by :

u̇ = −k

(
dJ̄

du

)T

(7)

2.3 Perturbation method

The key problem is the estimation of the gradient,
which could be addressed using several methods.
In the perturbation method (Leblanc, 1922; Krstic
and Wang, 2000), a sinusoidal perturbation of
amplitude a and frequency ω is added to the
input (Fig. 1). The gradient is estimated using a
high-pass filter, a modulation with the excitation
signal and a low-pass filter. An integrator then im-
plements the extremum-seeking control (7). The
perturbation method can be used for processes
with multiple inputs by choosing different fre-
quencies/phase shift for each perturbation signals.
Except for certain cases (Ariyur and Krstic, 2003),
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Fig. 1. Schematic for extremum-seeking using per-
turbations

the dynamics of the system should be relatively
fast compared to the perturbation. Also, the filters
must be slower than the perturbation, and the
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control of the gradient slower than the filters. This
requires a three-fold time scale separation which
slows down the optimization.

3. MULTI-UNIT OPTIMIZATION

Multi-unit optimization presents a faster alter-
native to gradient estimation, where a three-fold
time-scale separation is not required. As shown
in Fig. 2, the multi-unit optimization method
(Srinivasan, 2006) requires a process with (m+1)
identical units, where m is the dimension of u.
Examples of such processes are available in micro-
array reactors and production lines.

The various units are operated with input values
that are slightly different. The first unit, the
reference, is operated at the input value u0. The
other units, i = {1, ..., m} are operated at ui =
u0 + ei∆ with ei the ith unit vector. Then, the
gradient can be estimated by :

ˆ̄gi(uo) =
J̄(xi, ui) − J̄(x0, u0)

∆
(8)

where
(̂

dJ̄
du

)
= ˆ̄g. The extremum-seeking control

law (7) is then used for all units:

u̇i = −kˆ̄g
T
(u0) i ε{0, 1, ...m} (9)
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Fig. 2. Schematic for multi-unit unconstrained
optimization

All units follow the same control law and always
keep an input difference of ∆ one from each other.
The convergence of this scheme to a ball around
the optimum has been proven despite the errors
caused by the dynamics (which is assumed to be
stable) and the error due to finite differences.

In contrast to extremum-seeking using perturba-
tions, the perturbation here is not in the time-
domain but in the dimension of the system units,
which in turn implies that the time-scale sepa-
ration is not needed. Thus, the optimum will be
reached much faster with the multi-unit method
than with the perturbation method.

4. MULTI-UNIT OPTIMIZATION AND
GRADIENT PROJECTION

4.1 Constrained optimization using gradient projection

In the gradient projection method (Rosen, 1960;
Rosen and Kreuser, 1972), the descent direction
is the negative of the gradient projected onto the
active constraints. To understand this, consider
the necessary conditions of optimality (3). As the
Lagrange multipliers associated with the inactive
inequality constraints are zero, the optimality con-
ditions can be expressed using the active inequal-
ity constraints only. Let S̄ be the set of active con-
straints and µ̄ the Lagrange multipliers associated
to these active constraints. Denoting g = dJ

du
and

M = dS̄
du

, (3) becomes:

g + µ̄T M = 0 (10)

Then, the Lagrange multipliers of the active con-
straints are expressed by µ̄T = −gM+, where
M+ = Q(MQ)−1 is the pseudo-inverse matrix
of M , with any choice of Q such that (MQ) is
invertible. Using µ̄T = −gM+ in (10) gives,

gP = 0, P = I − M+M (11)

The traditional gradient projection makes the
choice Q = MT and uses u̇ = −kPT gT . Note that
from the definition of the projection MP = 0, but
with this particular choice of Q = MT , MPT = 0
also. So, the variation in the active constraints is
given by,

˙̄S =
dS̄

du
u̇ = −kMPT gT = 0 (12)

Though this is a nice property, the major difficulty
is that S̄ = 0 is not guaranteed if the gradients are
in error or if there are disturbances.

4.2 Generalized gradient projection

Note that the optimality conditions have two
parts: the active constraints, S̄ = 0, and the
gradient projection condition, gP = 0. Modifying
the extremum-seeking control (7) to include the
two parts of the optimality conditions gives:

u̇ = −kPT gT − βM+S̄ (13)

A non-zero β is required to ride along the active

constraint. With β > 0, ˙̄S = −βS̄ − kMPT gT

corresponds to a stable system that forces S̄ = 0.
The interesting aspect now is that due to the extra
controller, any choice of Q would work and not
necessarily Q = MT .

A simple choice of Q would be Q = [I 0]T , where
I is an identity matrix of dimension dim(S̄) ×
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dim(S̄). This results in a partitioning of the input
space uT = [ūT ũT ] and in M , i.e. M = [M̄ M̃ ].
The adaptation laws for ū and ũ can be calculated
from (13) by computing P with this choice of Q:

˙̄u = −βM̄−1S̄ ˙̃u = −k
[
−M̄−1M̃ I

]
gT (14)

Note that with such a choice of Q, the two
tasks of (13), i.e. (i) to keep the constraint active
and (ii) force the reduced gradient to zero, are
done by two parts of the input vector. The two
tasks are essentially decoupled and any of the
input variables can be assigned for keeping the
constraints active as long as (MQ) is invertible.

4.3 Switching logic to determine the set of active

constraints

The following switching logic can be used to
determine the active set. This leads to a hybrid
system and the transition is initiated by two
events:

(1) A constraint is included in the active set
when the constraint is hit.

(2) A constraint is removed from the active set
when the Lagrange multiplier corresponding
to the active constraint hits zero.

4.4 Multi-unit gradient estimation with gradient

projection

The scheme with multi-unit gradient estimation
and gradient projection is presented in Fig. 3. It
includes two additional blocks corresponding to
the switching logic to determine active constraints
and gradient projection. Also, the controller is
slightly more complex than the simple integral
controller used earlier. The particularity of multi-
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Fig. 3. Schematic for multi-unit constrained opti-
mization with gradient projection

unit gradient estimation in this context needs
to be stressed. Firstly, the objective and the
constraints are assumed to be measured and so the
estimation of the gradients of both the objective
and constraints are obtained simultaneously. No

extra units are required to calculate the constraint
gradients. A similar finite difference formula is
used to compute the gradient of the constraints.

d̂Sj

dui

=
Sj(xi, ui) − Sj(x0, u0)

∆
(15)

5. ILLUSTRATIVE EXAMPLE

5.1 Description of the system

An isothermal continuous stirred-tank reactor
with the two reactions A + B → C and 2B → D
is considered, with C being the desired product
and D an undesired product. The reactor is fed
by two streams with flow rates Fa and Fb and
inlet concentrations cAin

and cBin
, respectively.

The cost function is the amount of product C,
(Fa + Fb)cC , weighted by the yield factor (Fa +
Fb)cC/FacAin

. The constraints of the problem
include the upper bounds on the heat generated
and on the total flow. The optimization problem
is stated mathematically as follows:

max
Fa,Fb

J =
(Fa + Fb)

2c2
C

FacAin

(16)

s.t. ċA =
Fa

V
cAin

−
Fa + Fb

V
cA − r1 ≡ 0

ċB =
Fb

V
cBin

−
Fa + Fb

V
cB − r1 − r2 ≡ 0

ċc = −
Fa + Fb

V
cC + r1 ≡ 0

q − qmax ≤ 0, (Fa + Fb) − Fmax ≤ 0

r1 = k1cAcB, r2 = 2k2c
2
B

q = r1(−∆H1)V + r2(−∆H2)V

where cX is the concentration of species X , ki

the rate constants, ri the reaction rates, (−∆Hi)
the enthalpies of the two reactions, q the heat
produced by the reactions, V the reactor volume,
and qmax and Fmax, the bounds on the heat
production and the total flow rate, respectively.
The numerical values used in this study are given
in Table 1. cA0

, cB0
, cC0

, Fa0
and Fb0 are the

initial steady-state values of the system. The

Table 1. Parameter values and initial
conditions

k1 1.5 l mol/h (−∆H1) 7 × 104 J/mol
k2 0.014 l mol/h (−∆H2) 5 × 104 J/mol
V 500 l cAin

2 mol/l
qmax 106 J/h cBin

1.5 mol/l
Fmax 22 l/h cA0

0.085 mol/l
Fa0

7 l/h cB0
0.195 mol/l

Fb0
11 l/h cC0

0.692 mol/l

optimal operating conditions correspond to Fa =
7.62 l/h and Fb = 13.1 l/h. The constraint on the
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heat produced is active i.e. q = qmax and the value
of the objective function is 12.3 mol/h.

5.2 Perturbation method and barrier function

Perturbation method with the logarithmic barrier
function was used with the following parameters:

• Excitation: a = 0.1, ω = 1 rad/h, sin(ωt)
and cos(ωt) for the two inputs.

• Filters: ωl = ωh = 0.2 rad/h
• Adaptation gains: kFa

= kFb
= 1/8

• Log barrier gain: α = 0.1

Since the settling time is around 0.6 h, the fre-
quency of the perturbation was chosen to be (1/6
h). The lower the log barrier gain, the closer the
system is to the constraint. However the excitation
amplitude limits how close we can get to the
constraint, thereby providing a lower limit on the
log barrier gain. The maximum adaptation gains
values with which the system still converges were
used. The optimum is reached in about 150 hours
as shown on Fig. 4 and the value was 12.15 mol/h.

0 100 200 300
11

11.5

12

12.5
Objective function J

m
ol

/h

0 100 200 300
8

8.5

9

9.5

10
x 10

5 heat constraint

J/
h

0 100 200 300
6

8

10

12

Fa

time in hours

l/h

0 100 200 300
6

8

10

12

Fb

time in hours

l/h

Fig. 4. Results of the perturbation method with a
logarithmic barrier function

5.3 Multi-unit method and barrier function

Next, the multi-unit method with the logarithmic
barrier function was used with the following pa-
rameters:

• Excitation: ∆Fa
= ∆Fb

= 0.1
• Adaptation gains: kFa

= kFb
= 100

• Log barrier gain: α = 0.1

As shown in Fig. 5, the optimum is reached in
about 1.5 hours, 100 times faster than the per-
turbation method, thanks to a higher adaptation
gain. The final values are provided in Table 2.
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Fig. 5. Results of the multi-unit optimization
method with a logarithmic barrier function

5.4 Multi-unit method and gradient projection

The multi-unit method with projection of the
gradient on active constraints (14) was also im-
plemented. These control laws for various hybrid
states are given below :

• No active constraints
Ḟa = kFa

(J1−J0)
∆F

Ḟb = kFb

(J2−J0)
∆F

• Heat constraint of unit j is active
Ḟa = βq(qmax − qj)

Ḟb = kFb

(
(J2−J0)

∆F
− (q2−q0)(J1−J0)

(q1−q0)∆F

)

• Flow constraint of unit j̄ is active

Ḟa = kFa

(
(J1−J0)

∆F
− (F1−F0)(J2−J0)

(F2−F0)∆F

)

Ḟb = βF (Fmax − Fj̄)
• Both constraints active

Ḟa = βq(qmax − qj) Ḟb = βF (Fmax − Fj̄)

where Ji and qi are the objective function mea-
surement and the heat measurement of unit i
respectively and Fi = Fa + Fb. The pairing was
chosen arbitrarily, i.e Fa with the qmax constraint
and Fb with the Fmax constraint. The switching
logic is shown in Fig. 6. The following parameters
were used:

• Excitation: ∆Fa
= ∆Fb

= 0.1
• Adaptation gains: kFa

= kFb
= 100

• Constraint gains : βq = 0.006, βF = 8

The evolution of the input values is shown in
Fig. 7. First, the system evolves without any con-
straint being active. Then, the unit 1 hits the heat
constraint and from then on, Fa is controlled to
keep this constraint active. The other flow helps
to reach the optimum by following the gradient
projected on this active constraint. Table 2 pro-
vides a comparison of the results obtained using
a barrier function with those obtained using the
gradient projection. It can be seen that a better
cost is obtained by projection as compared to the
barrier approach by being closer to the constraint.
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Fig. 6. Switching logic for multi-unit optimization
with gradient projection
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Fig. 7. Results of the multi-unit optimization
method with projection

However, since the inputs to the different units
in the multi-unit method are non-identical, only
one of the units is on the constraint, while the
others are away from the constraint by a distance
determine by ∆.

Table 2. Cost, constraint and the input
values for various units and optimiza-

tion strategies

unit Fa(l/h) Fb(l/h) J(mol/h) q(kJ/h)

M-U 0 7.47 12.96 12.14 986
with 1 7.57 12.96 12.23 994
barr. 2 7.47 13.06 12.17 989

M-U 0 7.55 12.94 12.21 992
with 1 7.65 12.94 12.30 1000

proj. 2 7.55 13.04 12.24 995

6. CONCLUSION

In this paper, real-time optimization under in-
equality constraints was addressed using the pro-
jection of gradient on the active constraints. The
projection was generalized to take into account
the drift from the active constraints due to po-
tential error in the gradient estimation. Also, a
hybrid control law was proposed to take care of

the changes in active constraints. Multi-unit gra-
dient estimation scheme was used to provide the
gradients of the cost and constraints.

Despite a major improvement in terms of rate
of convergence to the optimum, the main disad-
vantage of the multi-unit method is the strong
assumption that the units are perfectly identical.
Future work will try to extend the application of
this method to process with multiple units which
are similar but not exactly identical.

REFERENCES

Ariyur, K.B. and M. Krstic (2003). Real-time

Optimization by Extremum-Seeking Control.
John Wiley and Sons.

Dehaan, D. and M. Guay (2005). Extremum-
seeking control of state-constrained nonlinear
systems. Automatica 41(9), 1567–74.

Desbiens, A. and A.A. Shook (2003). IMC-
optimization of a direct reduced iron phe-
nomenological simulator. 4th International

Conference on Control and Automation

pp. 446–450.
Guay, M. and T. Zhang (2003). Adaptive ex-

tremum seeking control of nonlinear dynamic
systems with parametric uncertainties. Auto-

matica 39(7), 1283–93.
Krstic, M. and H.-H. Wang (2000). Stability of ex-

tremum seeking feedback for general nonlin-
ear dynamic systems. Automatica 36(4), 595–
601.

Leblanc, M. (1922). Sur l’électrification des
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