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Abstract: In perturbation-based extremum-seeking methods, an excitation signal
is added to the input, and the gradient, computed from the correlation between
the input and output variations, is forced to zero. It is shown here that the
distance between the optimum and solution reached by the perturbation method
is proportional to the square of the frequency of excitation and does not go to
zero with the amplitude of the excitation. However, for Wiener/Hammerstein
approximations, the error will indeed go to zero with the excitation amplitude.
Simulation results on a simple reaction system are used to illustrate the concepts
presented in this work.
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1. INTRODUCTION

Real-time optimization has seen a resurgence of
interest in the recent years. The traditional ap-
proach is the model-based repeated optimization
where the model is adapted using the available
measurements and numerical optimization is per-
formed on the updated model (Marlin and Hry-
mak 1996, Zhang et al. 2002).

An alternative approach to real-time optimization
known as the “extremum seeking” allows treating
the optimization problem as a control problem.
The optimization problem becomes one of regulat-
ing the norm of the gradient at zero. Controlling
a system at a point with zero steady state gain is
closely related to dual adaptive control (Allison et

al. 1995) and probing control (Velut and Hagander
2004). The crucial point is the computation of this
gradient for which either an adapted model of the

system is used for analytical evaluation (Guay and
Zhang 2003), or the system is perturbed in order
to numerically compute the gradient (Krstic and
Wang 2000, Aryur and Krstic 2003). These meth-
ods have both been successively applied to the
on-line optimization of (bio-)chemical processes
(Guay et al. 2004, Wang et al. 1999).

This paper deals with the extremum-seeking
methods based on perturbations. The renewed
popularity of perturbation-based methods (Black-
man 1962) is mainly due to the publication of
(Krstic and Wang 2000) where a formal proof
of convergence has been established. Therein, it
has been shown that the system on the average
converges to a neighborhood of the optimum, the
size of this neighborhood being determined by the
amplitude of the excitation signal. However, not
much has been said on the dependence of size of
this neighborhood on the frequency of excitation
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since the system is assumed to be quasi-static
compared to the excitation frequency.

In this paper, the frequency dependence of the
neighborhood is quantified, and it is shown that
for a general nonlinear system its size is propor-
tional to the square of the excitation frequency.
The implication of this result is that even when
the amplitude of the excitation signal goes to zero,
the neighborhood will not shrink to zero. On the
other hand, this neighborhood does indeed shrink
to zero with the amplitude of the excitation signal
when Wiener/Hammerstein models are used.

The paper is organized as follows: The next sec-
tion introduces the perturbation method for ex-
tremum seeking. Section 3 presents the main re-
sults of this paper regarding the dependence of
the averaged solution on the excitation frequency.
A simple example is presented in Section 4 and
Section 5 concludes the paper.

2. EXTREMUM SEEKING USING
PERTURBATIONS

The problem addressed is the steady-state opti-
mization of a nonlinear dynamic system as stated
below:

min
θ

J(x, θ) (1)

s.t. ẋ = F (x, θ) ≡ 0

where x ∈ R
n is the state, θ ∈ R

m is the control
input, F : R

n × R
m → R

n is a smooth function
describing the dynamics and J : R

n × R
m → R

the objective function.

To solve this optimization problem online, the
following extremum-seeking controller is derived
from the necessary conditions of optimality, under
the assumption that the function J is convex.

θ̇ = k
dJ

dθ
= k

(
∂J

∂θ
−

∂J

∂x

(
∂F

∂x

)
−1

∂F

∂θ

)
(2)

The main challenge of extremum-seeking is the
gradient estimation and the perturbation based
schemes add an excitation signal to the input in
order to extract this information (Fig 1). Note
that the objective function is supposed to be
directly measured (y = J(x, θ)).

A high pass filter with cutoff frequency ωh isolates
the variations of this optimized variable from
its average value. The state that represents the
high pass filter is denoted by η. This signal is
then modulated by the same excitation signal.
A low pass filter with cutoff frequency ωl and
output ξ will filter the resulting signal in order
to get the required gradient, ξ = dJ

dθ
. Finally,

an integral controller with gain k drives this
estimated gradient to zero.
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Fig. 1. Extremum seeking control via perturba-
tion method inspired from (Krstic and Wang
2000).

The scheme can be summarized using the follow-
ing equations:

˙̂
θ = kξ, θ = θ̂ + a sin(ωt) (3)

ξ̇ =−ωlξ + ωl(y − η)a sin(ωt) (4)

η̇ =−ωhη + ωhy (5)

The value of the states at steady-state obtained
from ẋ = F (x, θ) ≡ 0 is given by x = l(θ).
Then, the cost function at steady-state is given
by y = J(l(θ), θ).

Next the deviation variables are defined: θ̃ = θ̂ −
θ∗, ỹ = y − y∗ and η̃ = η − y∗. Then, the
relationship between ỹ and θ̃ is expressed as ỹ =
J(l(θ∗ + θ̃), θ∗ + θ̃) − J(l(θ∗), θ∗) ≡ ν(θ̃).

Assuming that x is at steady state, the averaged
system for the three remaining variables (θ, ξ,
and η) is obtained by taking the average of the
right hand side over [0, 2π

ω
]. The averaged states

are denoted by the superscript (·)a. The averaged
system reads (Khalil 2002):

d

dt




θ̃a

ξa

η̃a


 =




kξa

−ωlξ
a + ωlω

2π
a
∫ 2π

ω

0
ν(θ̃) sin(ωt)dt

−ωhη̃a + ωhω
2π

∫ 2π

ω

0 ν(θ̃)dt




(6)

where θ̃ = θ̃a + a sin(ωt).

Convergence is established in (Krstic and Wang
2000) through the following steps:

• The exponential stability of the equilibrium
point of the above averaged system (θ̃a, ξa,
and η̃a) is first proved.

• From there on, the exponentially stability of
(θ, ξ, and η) (non-averaged) is established
using the averaging theorem (Khalil 2002).

• This non-averaged system (θ, ξ, and η) acts
as the “slow” manifold, while the original sys-
tem ẋ = F (x, θ) acts as the boundary layer
system which is assumed to be exponentially
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stable. Then, singular perturbation ideas are
applied to show that their interconnection is
also exponentially stable (Khalil 2002).

In present work, what is of interest is not the
stability properties, but the position of the equi-
librium (zero-correlation point). So, the part of
the result from (Krstic and Wang 2000) that deals
with the position of the equilibrium is repeated in
the following proposition.

Proposition 1. (Krstic and Wang 2000) The equi-
librium of the averaged model (6) is a function of
the amplitude of the excitation signal:

θ̃a = −
ν

′′′

(0)

8ν
′′(0)

a2 + O(a3) (7)

3. DEPENDENCE OF THE SOLUTION ON
THE PERTURBATION FREQUENCY

In the analysis presented in Section 2, it was
assumed that x and y are at steady state, i.e.
the relationship ỹ = ν(θ̃) is considered algebraic.
Then, the Taylor series approximation around the
origin to the first order is given by:

ỹ = ν(θ̃a + a sin(ωt)) (8)

= ν(0) + ν′(0)θ̃a + ν′(0) a sin(ωt) + O(a2)

Note that here the constant value θ̃a and the
sinusoidal excitation a sin(ωt) have the same gain,
i.e, the gain is independent of the frequency of ex-
citation. This, however, is true only if the system
dynamics are neglected.

In this section, we show dependence of the zero-
correlation point on the frequency of the excita-
tion signal, by taking into account the variation
of the gain of the system with frequency. For
this, instead of a static relationship ỹ = ν(θ̃), a
dynamic relationship ỹ = P (θ̃) will be assumed.
The averaged system (6) becomes :

d

dt




θ̃a

ξa

η̃a


 =




kξa

−ωlξ
a + ωlω

2π
a
∫ 2π

ω

0
P (θ̃) sin(ωt)dt

−ωhη̃a + ωhω
2π

∫ 2π

ω

0 P (θ̃)dt




(9)

3.1 General nonlinear system

Next, it will be shown that for a general nonlinear
system the difference between the optimum and
the zero-correlation point is proportional to the
square of the frequency.

Theorem 1. The equilibrium of the averaged model
given by (9) is a function of the amplitude and the
frequency of the excitation signal:

θ̃a = αa2 + βω2 + γa2ω + δω3 + O([ω a]4) (10)

where α, β, γ, and δ are constants that could be
computed from the Taylor series development of
the dynamic operator P . Also, O([ω a]4) is used to
represent O([ω a]4) = O(a4)+O(ω4)+O(ω2a2)+
O(ωa3) + O(aω3).

Proof: The equilibrium of the averaged system

(9) corresponds to ξa = 0,
∫ 2π

ω

0
P (θ̃) sin(ωt)dt =

0, and η̃a = ω
2π

∫ 2π

ω

0 P (θ̃)dt. The value of θ̃a,
is obtained from the second condition and is
analyzed below:

∫ 2π

ω

0

P (θ̃a + a sin(ωt)) sin(ωt)dt = 0 (11)

To compute the integral (11), fourth order Taylor
series approximation of P (θ̃) around the equilib-
rium point will be used. The order of truncation is
determined in such a manner that the only terms
that are of order 4 are neglected.

P (θ̃) = P (0) + P ′(0)θ̃ +
1

2
P ′′(0)θ̃2

+
1

3!
P (3)(0)θ̃3 +

1

4!
P (4)(0)θ̃4 + O([ω a]4)(12)

where P (i)(0) is the ith derivative of P evalu-
ated at the optimum. Note that P (i)(0) are lin-
ear operators. Also in the above development,
sinj(ωt) should be rewritten in terms of sin(jωt)
and cos(jωt). Then, the various terms of (12) can
be expressed as follows:

P ′(0)θ̃ = G10θ̃
a + G11 sin(ωt + φ11)a (13)

P ′′(0)θ̃2 = G20

(
θ̃a

2
+

a2

2

)
(14)

+G21 sin(ωt + φ21) 2aθ̃a

−G22 cos(2ωt + φ22)
a2

2

P (3)(0)θ̃3 = G30(θ̃a
3

+
3a2θ̃a

2
) (15)

+G31 sin(ωt + φ31)

(
3aθ̃a

2
+

3a3

4

)

−G32 cos(2ωt + φ32)
3a2θ̃a

2

−G33 sin(3ωt + φ33)
a3

4

P (4)(0)θ̃4 = G40

(
θ̃a

4
+ 3a2θ̃a

2
+

3a4

8

)
(16)

+G41 sin(ωt + φ41)
(
4aθ̃a

3
+ 3a3θ̃a

)

−G42 cos(2ωt + φ42)

(
3a2θ̃a

2
+

a4

2

)

−G43 sin(3ωt + φ43) a3θ̃a

+G44 cos(4ωt + φ44)
a4

8
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where Gij and φij are the gain and phase shift
caused by P (i) at the frequency jω, respectively.

Using (12)-(16) in (11) leads to the following
equilibrium condition:

4∑

i=1

Gi1 cos(φi1)

floor( i−1

2
)∑

j=0

µij θ̃a
i−2j−1

a2j = 0

(17)
where µij are the coefficients that can be derived

from (13)-(16). A third-order expansion of θ̃a is
used:

θ̃a = b0a + b1ω + b2aω + b3a
2 + b4ω

2 + (18)

b5a
2ω + b6aω2 + b7a

3 + b8ω
3 + O([ω a]4)

In addition, Gij and cos(φij) are also developed
in terms of ω:

Gij = Gij0 + ωGij1 + ω2Gij2 +

ω3Gij3 + O(ω4) (19)

cos(φij) = Cij0 + ωCij1 + ω2Cij2 +

ω3Cij3 + O(ω4) (20)

Next, G110 = 0 and C110 = 0 are used in the
development. G110 is the static gain of the first
derivative which is zero by the definition of the
optimum. C110 is the cosine of the phase shift
caused by G11 as s → 0. Let the numerator of the
transfer function representing the first derivative
be N(s) = (n0 + n1s + n2s

2 + · · · ). As G110 = 0,
n0 = 0. Then, s becomes a factor of the numerator
and this leads to lims→0 G11(s) ∝ s. So, G11 will
have a phase shift of π

2 as s → 0 and its cosine
would be zero.

Solving for the values of bi gives

bi = 0, i = {0, 1, 2, 6, 7} (21)

b3 =−
1

8

G310C310

G210C210
b4 = −

G111C111

G210C210
(22)

b5 =
C310

8

(G310G211 − G311G210)

G2
210C210

(23)

−
G310

8

(C311C210 + C310C211)

G210C
2
210

b8 = G111
(C111C211 − C112C210)

G210C
2
210

(24)

−C111
(G111G211 + G112G210)

G2
210C210

Retaining only the non-zero terms, it can be seen
that α = b3, β = b4, γ = b5 and δ = b8. 2

An important consequence of Theorem 1 is that
even if a → 0, the zero-correlation point does not
go to optimum, the error being a function of ω2:

lim
a→0

θ̃a = βω2 + δω3 + O(ω4)

On the other hand, since the equilibrium condi-
tion (17) has only even powers of a (due to the
presence of 2j in the exponent), the following
result can be deduced.

Lemma 1. In the expansion of θ̃a given by (18),
the coefficient of all terms that have an odd
exponent of a are zero.

This lemma can be proved by induction, the de-
tailed proof being omitted for the sake of brevity.

3.2 Wiener and Hammerstein models

Wiener or Hammerstein models are widely used
to represent nonlinear dynamic systems (Witten-
mark and Evans 2001). Such models have linear
dynamics and a static nonlinearity. The difference
between Wiener and Hammerstein models come
from the order in which the linear and nonlinear
blocks are placed. The Wiener model consists of
a static nonlinearity followed by a linear dynam-
ics, while in the Hammerstein model, the linear
dynamics are placed first.

The interesting aspect of these models is that, at
the optimum, the gain of the static part, which
multiplies the linear dynamics, is zero. So, the
overall operator G11 = 0 for all frequencies. When
this fact is used in Theorem 1, it can be seen
that the coefficients of ω2 and ω3, i.e. β and δ are
zeros. This means that θ̃a = αa2+γa2ω+O(a4)+
O(ω4) + O(ω2a2) + O(ωa3) + O(aω3). Also, from
Lemma 1, O(ωa3) + O(aω3) = 0. Next, it will be
shown that when G11 = 0 for all frequencies, θ̃a

does not depend on O(ω4) either.

Theorem 2. If the nonlinear dynamic system is
represented by a Wiener or a Hammerstein model,
then, the equilibrium of (9) is given by,

θ̃a = αa2 + γa2ω + O(a2ω2) + O(a4) (25)

The above theorem can also be proved by induc-
tion, by noting that an addition of a term like ωi

in θ̃a will appear alone in the second derivative
and from (17) it should be zero.

The consequence of this result is that for a Wiener
or a Hammerstein model the distance between the
zero-correlation point and the optimum goes to
zero as a → 0,

lim
a→0

θ̃a = 0

However, note that even for a Wiener or Hammer-
stein representation, for a 6= 0, the equilibrium
point will in fact be affected by the frequency.

Another interesting result can be stated when the
static nonlinearity of a Wiener or Hammerstein
model is symmetric around the optimum.
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Lemma 2. Let the nonlinear dynamic system be
represented by a Wiener or a Hammerstein model,
wherein the static nonlinearity is an even function
of θ̃. Then, θ̃a = 0 is an the equilibrium of (9).

Proof: This result stems from the following facts:
(i) The odd derivatives of the static nonlinearity
are zero at the origin. (ii) Wiener/Hammerstein
representation indicates that the gain for these
derivatives is zero at all frequencies. (iii) Remov-
ing the odd derivatives, θ̃a becomes a factor of
(17). So, θ̃a = 0 is a solution. 2

This result states that the error comes from the
asymmetry of the static nonlinearity. However,
note that nothing much can be said if the non-
linearity cannot be represented by a Wiener or
Hammerstein model.

The above development shows that, from an op-
timization perspective, certain nonlinear systems
behave differently from their Wiener/ Hammer-
stein approximations. At the steady-state opti-
mum, the gain is zero for all frequencies with
Wiener or Hammerstein approximation. However,
at the steady-state optimum of a nonlinear dy-
namic system, though the static gain is zero, the
gain at other frequencies is typically non-zero.
This aspect can be captured by representing a
nonlinear dynamic system as a sum of two Wiener
or Hammerstein models as shown in Fig. 2. The
first branch has a zero gain at the static optimum,
while the second has nonzero gain.

u
y

+

+

1

( )A s

( )

( )

sB s

A s

Nonlinearity 1

Nonlinearity 2

Fig. 2. Approximation of a general nonlinear sys-
tem using two parallel Hammerstein models.

4. ILLUSTRATIVE EXAMPLE

4.1 Description of the system

A simple isothermal reaction system in a contin-
uous stirred tank reactor (CSTR) will be con-
sidered to illustrate the dependence of the zero-
correlation point with frequency.

• Reaction system: A → B → C, 2A → D.
• Model equations:

dCA

dt
= D(CAin − CA) − k1CA − 2k3C

2
A

dCB

dt
= k1CA − k2CB − DCB (26)

• Variables: CX , concentration of species X ; D,
Dilution rate; ki, rate constants; CAin, inlet
concentration.

• Objective: Maximize the concentration of
product B, CB .

• Manipulated variable: D.
• Parameter values: k1 = 24 h−1; k2 = 24 h−1;

k3 = 0.5 l mol−1 h−1; CAin= 1 mol l−1.

4.2 Linearization

The system under study is linearized to obtain the
following transfer function between CB and D:

G(s) =
CB0s + α

(s + D0 + k1 + 2k3CA0)(s + D0 + k2)
(27)

where α = CB0D0 + k1 (CB0 + CA0 − CAin) +
2k3CA0CB0, and the subscript (·)0 is used to
represent the point around which the linearization
is performed.

Note that at the optimum α is zero and changes
sign. So, this particular system cannot be repre-
sented by Wiener or Hammerstein models, and
has to be approximated locally by two parallel
branches as illustrated in Fig. 2.

4.3 Simulation results

As summarized in Table 1 and Fig. 3 below,
several excitation signal frequencies are used and
the obtained zero-correlation points are compared
to the static optimum dilution rate 24.016 h−1.
The interesting point to note is that the error
is small until a certain cutoff frequency, and in-
creases drastically when the frequency is larger
than this value.

Two scenarios are considered. When the frequency
is very high, i.e. 3.16 h−1 (Fig. 4), the obtained
equilibrium value, 14.566 h−1, is far from the
optimum. The frequency of the output signal is
the same as the input frequency, and the input and
output have a phase lag of π

2 . When the frequency
is very low, i.e. 0.05 h−1 (Fig. 5) the equilibrium
value is relatively close to the optimum. Also, note
that the output has a strong “double frequency”
component, which is what is expected if the sys-
tem had been static.

Table 1. Influence excitation frequency
on the equilibrium value

Excitation kopt τh τl Equilibrium

frequency[h−1] [h] [h] [h−1]

0.0500 14.142 80.000 80.000 24.019
0.5000 141.42 8.0000 8.0000 23.875
1.0000 282.84 4.0000 4.0000 23.324
2.0000 565.68 2.0000 2.0000 20.842
3.1600 893.78 1.2658 1.2658 14.585
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Fig. 3. Evolution of the solution as a function of
the excitation signal frequency.
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Fig. 4. Input and output signals for a high fre-
quency excitation, f = 3.16h−1.
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Fig. 5. Input and output signals for a low fre-
quency excitation, f = 0.05h−1.

5. CONCLUSIONS

The objective of this work was to show that the
perturbation-based extremum-seeking algorithm
on the average does not converge to the optimum
but only close to it. The error for a general
nonlinear dynamic system is proportional not only
to the square of the excitation amplitude but also
to the square of frequency of excitation. The main
point here is that slower optimization frequency is
not only required for stability purposes but also
for accuracy. With this inference, the frequency of
excitation should be low, which in turn makes the
optimization slower if accuracy is demanded.

On the other hand, for the particular case of the
Wiener/Hammerstein models, the error is always
multiplied by the square of amplitude of the
excitation signal. So, by choosing a low amplitude
for the excitation signal, of course limited by the
noise, the effect of frequency could be minimized.
Faster convergence can possibly be achieved.
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