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1.  INTRODUCTION
Key equipment in large continuous plants typically 
represent Distributed Parameter Systems (DPS), where the 
system properties exhibit a significant spatial variation. 
While most product quality variables are determined by the 
endpoint properties of the DPS, others may depend on the 
reaction path assumed during processing. The path 
dependence is also critical in situations where irreversible 
phenomena may occur such as catalyst poisoning or 
gelation. Furthermore, the endpoint itself is a manifestation 
of the reaction path and a particular path adopted may offer 
advantages over others. Thus, from an operations 
perspective, it may be desirable to control not only the 
endpoint but also the spatial property profile. Examples of 
DPS include fixed bed reactors, distillation towers and 
continuous pulp digesters. Despite these advantages of 
profile control, only the endpoint property is commonly 
controlled in large-scale distributed parameter systems. For 
example, control of bottom and top product compositions 
in distillation column [1, 2] as well as endpoint Kappa 
number control in a continuous pulp digester [3, 4] have 
been reported in literature. An obvious advantage of the 
endpoint property control is that we typically have an 
online or laboratory measurement of the property of 
interest and this facilitates its implementation. On the other 
hand, control of full property profile has received little 
attention. Despite its advantages, controlling the property 
profile requires addressing additional challenges. Firstly, 
the profile must be constructed from available 
measurements. Secondly, guaranteeing feasibility of the 
target profile in presence of disturbances is difficult. Thus, 
while a target endpoint may continue to be achievable for a 
particular set of disturbances, it is unlikely that the target 
profile will be achievable for the same set of disturbances.  
In fact the part of the target profile close to the feed is 
unlikely to be achieved even for very small perturbations 
in feed composition.

Reconstruction of the profile may be possible through state 
estimation.  For example, Padhiyar et al. [5] present 
estimation of the Kappa number profile in the continuous 
digester using a multi-rate extended Kalman filter. 
Subsequently, they present control of Kappa number at 
three different locations along the length of the digester. 
Doyle and Kayihan [6] show that control of Kappa number 
at multiple points results in a tightly constrained Kappa 
number profile. Profile control strategies are also used for 

control of packed bed reactors to ensure that the reactor 
hotspot is below the safety limit, which in turn avoids 
catalyst deactivation [7, 8]. A full profile control of 
temperature in an FBR has been experimentally 
demonstrated by [9].  

System theoretic properties of DPS and its control have 
attracted a lot of attention [10].  Broadly, the control 
approach can be classified into two types.  A practical 
approach includes discretization of the nonlinear PDE 
followed by synthesis of the controller [11-13]. A 
drawback of this approach is that system properties such as 
controllability and observability that depend only on the 
location of the actuators and sensors, may now depend on 
the discretization scheme [14]. The other approach is based 
on maximum principle of Pontryagin principle [15]. In this 
approach, the controller is synthesized based on the infinite 
dimensional model of the distributed parameter system. 
Applicability of this approach is limited to problems of 
small size and also due to analytical simplifications that 
may be used. In this work we use the former approach for 
control of distributed parameter systems. We consider an 
extended MPC [16] implementation for profile control. 
When the target profile becomes unachievable, either due 
to disturbances or input constraints, the controller tuning 
plays a crucial role in determining the closed loop 
behaviour. For example, we may provide a higher priority 
to achieve the endpoint target when the whole profile 
cannot be achieved.  In this work, we propose use of a 
lexicographic optimisation [17, 18] based MPC to 
explicitly prioritise the different parts of the profile. Here 
we split the profiles into sections and solve the MPC 
control problem as a multi-tiered optimisation, where the 
different tiers represent priorities of the different parts of 
the profile.  Once an optimal solution is obtained for a 
particular tier, the next most important objective is 
optimized by using constraints that ensure that the 
objective of the preceding tier is maintained at a 
satisfactory level. This process is continued until the 
optimal value of the least important objective is achieved. 
A similar strategy has been implemented in the framework 
of linear MPC for prioritizing the various goals of the 
controller such as satisfaction of setpoints and feasibility of 
constraints [19, 20]. Our work attempts to tailor the 
lexicographic strategy for use in profile control of 
distributed parameter systems. For comparison purpose, we 
also consider the non-lexicographic MPC wherein the full 
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profile is controlled using single weighted objective 
function. We will refer to this strategy as full profile 
control. The lexicographic optimization based MPC offers 
significant advantages [19] over profile control when the 
target profile becomes unachievable by explicitly 
prioritising the different parts of the profile in a transparent 
manner. We demonstrate using a simple example that the 
lexicographic optimisation based MPC spans between 
endpoint property control and the whole profile control 
strategies. The added computational expense of solving 
multiple optimisation problems at each instant is not 
significant when we use linear MPC or extended MPC 
where the optimisation problem is a quadratic program.
The paper has been organized as follows. Section 2 
introduces a hypothetical plug flow reactor (PFR) example 
and illustrates the issues pertaining to the available degrees 
of freedom in the profile control problem.  We discuss the 
three different control law formulations namely, for 
endpoint control, for profile control using a single 
objective function, and for profile control with 
lexicographic method in Section 3. Simulation results for 
the PFR example are presented in Section 4. To verify the 
benefits of the lexicographic optimisation based MPC for 
large-scale distributed parameter systems, we present the 
profile control in a continuous pulp digester of industrial 
scale as Section 5 followed by concluding remarks.   

2.  AN ILLUSTRATIVE EXAMPLE 
As a representative DPS, we consider a hypothetical 
system of a PFR as shown in Fig. 1.  The system is 
approximated by nine CSTRs in series. Reactant A enters 
the first CSTR and flows down the column to form dimer 
product P through the following elementary reaction,   

2
k

A P       (1) 
Reactant A may also be introduced through trim streams 
locations in the 4th and 7th CSTRs.  We seek to control the 
profile of the product concentration along the length of the 
column. The three manipulated variables (MVs), F, Fa, and 
Fb, can be used to control three independent points along 
the profile. For example, fixing one concentration from 
each of the sets {Cp,1, Cp,2, Cp,3}, {Cp,4, Cp,5, Cp,6} and 
{Cp,7, Cp,8, Cp,9} fixes the entire profile.  The remaining 
points of the profile are determined by the interaction of 
the state variables and the structure of the DPS.  If one of 
the target points of the profile is Cp,7, then fixing Cp,7 fixes 
Cp,8 and Cp,9 for the structure depicted in Fig. 1. Hence one 
cannot control all the three compositions, Cp,7-Cp,9. On the 
other hand, had Fa, and Fb been located at 8th and 9th

CSTRs, independent control of Cp,7, Cp,8 and Cp,9 would 
have been possible. Thus, the idea of the whole profile may 
be equivalently represented in terms of independent points 
on the profile and these points must be selected depending 
on the location and type of the manipulated variables.  For 

Fig. 1. Schematic diagram of a plug flow reactor. Variables in 
bold letters are CVs, those in italics are MVs and ones in boxes 
are the measurements. 

the current work, we assume that the target profile can be 
converted to unique target values of Cp,3, Cp,6, and Cp,9.

3.  CONTROL METHODOLOGY 
The model of the distributed parameter system may be 
described in the state space form after spatial discretization 
as follows: 

( , , )x f x u d                         (2)
( , )y g x d    (3) 

where x, u, and d are vectors of state, manipulated, and
unmeasured disturbance variables, respectively. Available 
measurements are denoted by y. Nonlinear model 
predictive control of a distributed parameter system 
generally represents a formidable task due to requirement 
of integrating a set of partial differential equations during 
the online solution of a nonlinear program. To retain the 
simplicity of quadratic program, Garcia [16] suggested that 
the future predictions needed in MPC may be obtained by 
adding the nonlinear unforced response of the system with 
a forced response based on a linear model. Thus, the 
approximated model response may be written as,  

( ) ( ( ), ( ), ( )) ( ( ) ( ))0 0
( )0 0 0

t t f
x t f x u t d d u u t d

ut t u t
   (4) 

Use of such an approximate form of the model makes the 
resulting MPC formulation a quadratic program (QP).  As 
we may not have measurements of all the state variables, 
we use an Extended Kalman Filter (EKF) for state 
reconstruction. For a recent reference of EKF based MPC 
formulation and its implementation, the reader is referred 
to Padhiyar et al. [5]. It was observed in the 
abovementioned reference that the EKF with an input 
disturbance model provided reasonable state estimates for a 
wide range of process and parametric disturbances in a 
continuous pulp digester. We continue using input 
disturbance modelling, where it is assumed that the effect 
of an unmeasured disturbance can be estimated by 
assuming the disturbance as a load variable. The MPC 
strategy calculates the control moves by an online solution 
of the following optimisation problem, 

2 2
min ( )1/ 1/Y R Uk k k k kWe WuUk

 (5) 

such that 

.... 01u uk c k p
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min max , 0 1u u u l q
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,1
/ / /
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[ ... ]1/ 1/ /2 /
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where Yk+1/k is a vector of output predictions over the 
prediction horizon p and Rk+1 is the corresponding target.  
If the controlled variable is chosen as only the endpoint, 
the above problem refers to endpoint property control. On 
the other hand if Yk+1/k consists of prediction of the whole 
profile (or the points that uniquely characterize the profile) 
the control problem becomes one of full profile control.  

Uk represents an appropriately defined vector of input 
moves over q future samples, which are optimised at every 
sampling instant. Wu and We are weighting matrices for the 
manipulated inputs, uk, uk+1… uk+q-1 and the controlled 
variables, yk, yk+1, …yk+p, respectively.  
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The lexicographic method of optimisation assumes that the 
objective function consists of trade-offs, which can be 
prioritised.  Thus, in the full profile control problem, if the 
whole profile becomes unachievable, we may have 
alternate solutions, each of which may achieve only parts 
of the target profile.  We may then want to prioritise so that 
certain parts of the profile are achieved at the cost of other 
parts. While this is heuristically attempted in conventional 
MPC applications by differentially weighting the multiple 
control objectives, a systematic procedure results from the 
lexicographic method of optimisation [17, 18].  Let us 
assume that the profile has been split into N sections with 
Y1

k/k, Y2
k/k, , YN

k/k, representing the relevant profile 
estimates at time instant k. Note that these sections could 
be overlapping or non-overlapping.  The control objective 
for each section may then be written as,  

2 2
/ 1

1 1
( ) ( )

p c
i i i i i

e k j k k j u k m
j m

J W Y R W U     (6) 

where i = 1,2, ,N. We assume that the N sections are 
numbered such that section 1 represents the most important 
part of the profile, section 2 the next most important part of 
the profile and so on. The MPC controller based on 
lexicographic method solves the following problem online,

1

1

, , , 1

1
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where Ci represents the constraints relevant to the ith

objective function corresponding to the ith section of the 
profile. Typically Ci consist of constraints on the input and 
output variables. The equality constraints /

*
/k p k

i i
k p ky y

used in the (i+1)st tier of the optimization problem above 
enforce the lexicographic constraint that the optimal profile 
at the end of the prediction horizon obtained in the ith tier is 
maintained. The right hand sides of these lexicographic 
constraints denote the optimal values obtained in the 
previous tier. Thus, the profile in the previous section 
should achieve its optimal value at the end of the 
prediction horizon. The optimised input corresponding to 
the current time instant, Uk, obtained at the end of the Nth

optimisation problem is injected into the plant.  Our 
simulations revealed that the lexicographic constraints are
usually active at the optimal solution of the ith optimisation 
problem.  Thus, the lexicographic constraints constrain the 
evolution of the optimal profile in the i-1 section at steady 
state to its optimal value while solving the ith optimisation 
problem.

To summarize, the lexicographic optimisation based MPC 
finds an optimal solution that explicitly prioritizes the 
controller objectives.  Since in the current work, we use an 
extended MPC implementation, each of the optimisation 
problems are QPs for which efficient solvers exist.  In the 
next section, we compare the pros and cons of the exit and 
full profile control strategies and demonstrate that the 

lexicographic method based control provides a trade-off 
between the two.

4.  BENEFITS OF LEXICOGRAPHIC OPTIMIZATION 
BASED MPC: A CASE STUDY  

We use a simple example consisting of a PFR presented in 
Section 2 to test the benefits of the lexicographic 
optimisation based MPC.  We assume the reaction in 
equation (1) as irreversible and isothermal following 
elementary kinetics. A mass balance over an infinitesimally 
small radial slice along the flow direction z yields the 
following mathematical model for the DPS, 

( ) 2C Cp pF z kCaAt z
(8)

where Ca is the mass concentration of reactant A and Cp the 
concentration of product P.

As shown in Fig. 1, we simulate the DPS assuming 9 
CSTRs in series.  We also assume that we have access to 
four measurements namely product concentrations at 1st,
4th, 7th, and 9th CSTRs. As discussed previously, we could 
estimate the full profile (product concentrations in the 9 
CSTRs) and attempt to control it. Alternatively, we could 
achieve the same by fixing one concentration from each 
sets {Cp,1, Cp,2, Cp,3}, {Cp,4, Cp,5, Cp,6} and {Cp,7, Cp,8, Cp,9},
since this uniquely fixes the entire profile.  We have 
chosen Cp,3, Cp,6, and Cp,9 as the controlled variables for the 
two profile control approaches and Cp,9 for exit control 
approach. The three manipulated inputs include the main 
feed flowrate at the top of the column and two trim 
flowrates Fa at the 4th CSTR, and Fb at the 7th CSTR. The 
three feed flow streams carry pure component A with the 
nominal feed concentration Ca,F,,1, Ca,F,,4, and Ca,F,,7 at 0.5 
kg.m-3.

To showcase the merits of the three control approaches 
discussed in Section 3 we consider both servo as well as 
regulatory problems. The initial (Setpoint 1) and final 
(Setpoint 2) targets used in the servo problem are 
documented in Table 1. The regulatory problem results 
from a step disturbance in the feed concentration.  In Case 
Study 1, the injected disturbance is small enough that the 
target profile (Setpoint 2) continues to be feasible. In Case 
Study 2, the target profile (Setpoint 2) cannot be achieved 
due to the large magnitude of the disturbance.  Both of 
these case studies assume no mismatch between plant and 
controller models.

4. 1.  Case Study 1: Achievable target profile
Here the system is switched from Setpoint 1 to the Setpoint 
2 at 120 min. A +10 % step disturbance in the 
concentration of the feed stream at top of the column, 
Ca,F,1, is injected at 520 minutes. The closed loop response 
for such a servo and a regulatory problem using the end 
point and full profile strategy is shown in Fig. 2.  The error 
penalty matrix for the endpoint property control strategy is 
We = 2x105 and for the full profile control strategy We = 
diag(5x105  3x105  2x105) corresponding to Cp,3, Cp,6, and
Cp,9, respectively.  These values of the weight matrix were 
selected to normalize the deviations from the setpoints for 
each of the three controlled variables thus ensuring equal 
contribution in the error penalty term of the objective 
function.  Weighting matrix for inputs is Wu = 
diag(2.5x103  104 104). The corresponding manipulated 
input trajectories are shown in Fig. 3.

It is noted that the controlled variables using endpoint 
control (Cp,9) and profile control (Cp,3, Cp,6, Cp,9) strategies 
successfully switched from their old targets to new targets 
even in presence of the disturbance.  Indeed, the endpoint 
control strategy does not attempt to control Cp,3 and Cp,6
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Table 1.  Definition of two setpoints and physical limits on 
manipulated inputs for all the four cases 

Cp,3,
Kg.m-3x102

Cp,6,
kg.m-3 x 102

Cp,9,
kg.m-3 x 102

Setpoint1 7.00 9.17 11.73 
Setpoint2 5.68 6.98 8.77 

F, m3.min-1 Fa, m3.min-1 Fb, m3.min-1

Min 0 0 0 
Max 2 1 1 

Fig. 2. Case 1: Closed loop response for endpoint control (dashed) 
and profile control (solid): reference value (dotted) 

Fig. 3.  Case 1: Manipulated variable profile for endpoint control 
(dashed) and profile control (solid) strategies 

resulting in the apparent offset.  This clearly demonstrates 
that the full profile control strategy may successfully 
control the reaction path and thus offer advantages for 
overall property control. Fig. 3(d) shows the steady state 
profile of the product composition along the length of the 
column at t = 1000 min. Simulation times for exit control 
and profile control are 0.02 sec, and 0.021 sec respectively. 
These values are reported for a PIV; 1 Gb RAM and 1.8 
GHz processor.  

Thus, if the targets are feasible, both profile and endpoint 
control strategies are able to achieve their objectives 
satisfactorily. As available degrees of freedom are 
efficiently utilized in profile control it may be preferable 
over endpoint property controller. Next we present a case 
we present a case where a severe disturbance results in 
infeasibility of Setpoint 2. 

4. 2.  Case Study 2: Unachievable target profile
As discussed previously, the target profile may become 
unachievable in presence of large disturbances or limited 
scope of manipulation. To simulate such a situation, we 
increase Ca,F,1 from 0.5 Kg.m-3 to 1 Kg.m-3 with constraints 
in manipulated inputs as shown in Table 1. Using identical 
controller tuning as in Case Study 1, the simulation results 
are depicted in Fig. 4 and Fig. 5.  The full profile control 
strategy (solid line) attempts to reject the disturbance by 
reducing the residence time of the reactant and hence 
increasing the three manipulated variables as seen from 
Fig. 5. However, the MVs saturate and an offset is 
observed in all three sections of the PFR.  More 
importantly, the endpoint target properties are also not 
achieved. On the other hand, since the endpoint controller 
attempts control of Cp,9 alone, it successfully uses the 
degrees of freedom to meet its objective (dashed lines in 
Fig. 4 and Fig. 5). Although we observe an apparent offset 
in Cp,6 and Cp,9, the controller at least provides the endpoint 
targets. Since Cp,9 uniquely characterizes the profile in 
CSTRs 7-9, it implies that at least in this section, the target 
has been met. Fig. 4(a) and 5(b) show that the target 
profiles are not met in CSTRs 1-3 and 4-6 respectively. 
However, from an operations perspective, the exit control 
strategy may be superior to the whole profile strategy.  The 
lexicographic method, on the other hand, offers a 
systematic method to assign the degrees of freedom to the 
conflicting control objectives. Here, we first divide the 
PFR into multiple sections. We choose overlapping 
sections with N=3. Section 1 consists of CSTRs 7-9, 
section 2 with CSTRs 4-9 and section 3 with CSTRs 1-9. 
The profile in section 1 has the highest priority and thus the 
corresponding control problem with objective function J1

(see Equation (7)) is solved first.  This is followed by 
solution corresponding to sections 2 and 3 along with the 
appropriate lexicographic constraint.  The performance of 
the lexicographic method is shown as the dashed-dotted 
line in Fig. 4 and Fig. 5.  It is observed from Fig. 4(c) that 
the lexicographic optimization based controller achieves its 
target in section 1 even in presence of the disturbance. It 
then proceeds to achieve the target profile in the middle 
part of the PFR with the remaining degrees of freedom 
while maintaining the target profile in the lower part of the 
PFR (see Fig. 4(b)).  Finally, it attempts to obtain the target 
profile in the top part of the PFR.  However, this is 
unachievable as observed from Fig. 4(a).  While the 
infeasibility of the profile is due to fundamental process 
limitations, the lexicographic optimisation based MPC
systematically achieved the control objectives by 

Fig. 4. Case 2: Closed loop response for endpoint control (dashed), 
profile control with a single objective function (solid), and profile 
control with lexicographic optimization (dashed dotted) strategies; 
reference value (dotted) 

(a)

(c) (d)

(b)

(a) (b)

(c)

(d)
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Fig. 5.  Case 2: Manipulated variable profiles for endpoint 
control (dashed), for profile control with a single objective 
function (solid), and for profile control with lexicographic 
optimization (dashed dotted) strategies 

satisfying section 1 and 2 while failing to meet target in 
section 3.

 Although the lexicographic method solved three QPs, the 
integration of the PDEs necessary to provide future 
predictions in Equation (4) need to be performed only 
once.  The simulation times for solving a single iteration in 
the profile control using a single objective function and 
using lexicographic optimization are 0.5s and 0.54s 
respectively. Thus, in our problem the lexicographic 
method was only 8% more computationally expensive than 
the full profile control problem.

5.  PROFILE CONTROL IN A PULP DIGESTER  
Kraft pulping process produces pulp by delignifying wood 
chips with an aqueous solution of sodium hydroxide and 
sodium sulfide, called white liquor. The Kappa number 
measures the extent of delignification and represents one of 
the key property variables that need to be controlled. A 
schematic of a dual vessel digester is shown in Fig. 6. 
Wood chips and white liquor are introduced in the 
impregnation vessel. Here white liquor diffuses into the 
pores of wood chips. The chip-liquor mixture flows into 
the digester vessel wherein majority of the delignification 
occurs due to higher temperature. The digester vessel is 
divided into three functional zones namely cook, modified 
continuous cook (mcc), and extended modified continuous 
cook (emcc). The wood chips and white liquor flow 
cocurrently within the cook zone, at the end of which the 
spent liquor is extracted and sent for recovery. The chips 
then encounter a countercurrent flow of dilute liquor. The 
detailed description of the process and mathematical model 
are provided elsewhere[21, 22]. Material properties of the 
pulp such as fibre length depend on the history of 
processing in the digester. Certain safety related issues 
such as plugging of the digester vessel are also related to 
the reaction path [23]. In this work, we control Kappa 
number at the end of cook, mcc, and emcc zone as shown 
by bold letters in Fig. 6. The cook trim, emcc trim, and 
mcc temperature represent the manipulated inputs. 

In our simulations, we have introduced parametric 
mismatches in heat transfer coefficient and heat of reaction 
to simulate plant-model mismatch. Heat transfer 
coefficient of the plant model is increased from 744.3 to 
748.2 KJ.min-1.K-1.m3 and heat of reaction was reduced 
from 639.1 to 636.5 KJ.kg-1. Setpoint change is introduced 
at 2010 min. Definitions of both the setpoints and 
constraints are provided in Table 2. Weighting matrices We

and Wu, for output errors and inputs in control calculations 
are also provided in Table 2. Closed loop response by both 
the profile control approaches, namely full profile control 
(solid line) and lexicographic optimization based profile 
control (dashed-dotted line) are shown in Fig. 7 and 
corresponding manipulated input profiles in Fig. 8.  As can 
be seen from Fig. 7, the conventional MPC for full profile 
control fails to achieve any of the three outputs to its 
setpoint. On the other hand, lexicographic optimization 
based MPC could bring the exit Kappa number to its set 
point, while selectively transferring the offset to profiles in 
the cook and mcc sections. 

4. CONCLUSIONS 
In this work, we demonstrated a novel formulation of MPC 
using lexicographic optimisation.  This formulation has an 
advantage of explicitly prioritising the conflicting control 
objectives, which is of particular concern when the targets 
become infeasible.  We demonstrated the benefits for 
profile control in a DPS using a simple PFR example and a 
continuous pulp digester that represents a large-scale DPS.  
We also showed that the added computation burden is 
insignificant when using extended MPC.

Fig. 6. Schematic of dual vessel pulp digester.  Variables in italics 
represent manipulated variables, in bold font represent controlled 
outputs. 

Fig. 7. Case 3: Closed loop response for profile control 
with a single objective function (solid), and lexicographic 
optimization (dashed dotted) strategies; reference value 
(dotted) for the continuous pulp digester 
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Fig.   8. Case 3: Manipulated inputs profiles for profile control 
with a single objective function (solid), and lexicographic 
optimization (dashed dotted) strategies; for the continuous pulp 
digester.

Table 2.  Controller settings for the continuous pulp digester

Setpoints
Cook Kappa Mcc Kappa Exit Kappa

Setpoint1 93.5 50.5 23.8 
Setpoint2 98.7 65.4 28.5 

Input and output weightings 
We 22.9  78.3    351.3 
Wu  0.0625           625        1907 

Input constraints 
Emcc T, K Cook trim 

m3.min-1
Mcc trim 
m3.min-1

Min 400 0 0 
Max 440 1 1 
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