
8th International IFAC Symposium on
Dynamics and Control of Process Systems

FAST COMPUTATION OF THE HESSIAN OF
THE LAGRANGIAN IN SHOOTING

ALGORITHMS FOR DYNAMIC
OPTIMIZATION

Ralf Hannemann, Wolfgang Marquardt 1

Lehrstuhl für Prozesstechnik, RWTH Aachen University,
Turmstr. 46, 52064 Aachen, Germany

Abstract: One approach to solve optimal control problems by direct methods is
the so called sequential approach or single shooting. Only the control variables
are discretized resulting in a NLP which can be solved with SQP or interior point
methods. This paper presents a new methodology to efficiently provide the Hessian
of the Lagrangian of that resulting NLP. The algorithm is based on the second-
order adjoint method and introduces the novel concept of composite adjoints to
reduce the computational effort of a Hessian evaluation. Though, this contribution
is for sake of simplicity restricting to single shooting, the same methodology can
also be easily applied to multiple shooting. Copyright c©2007 IFAC

Keywords: optimal control, single shooting, multiple shooting, Hessian,
Lagrangian, adjoints

1. INTRODUCTION

Optimal control problems arise in many en-
gineering applications. Originally dealing with
problems in aerospace nowadays optimal control
and especially nonlinear model predictive control
(Rawlings, 2000), where a large number of related
optimal control problems have to be solved on a
moving horizon, is a current research issue of the
process industry.

Direct methods have been proven to efficiently
solve large scale optimal control and nonlinear
model predictive control problems. They rely on a
discretization of the optimal control problem and
apply nonlinear programming techniques to solve
the resulting finite dimensional nonlinear program
(NLP). Depending on the kind of discretization
and the formulation of the NLP one distinguishes
between the full discretization approach, multiple

1 Corresponding author: marquardt@lpt.rwth-aachen.de

shooting and single shooting. A comprehensive
overview of the different solution techniques is
given in the book of Grötschel et al. (2001). For
the sake of notational simplicity this paper focuses
on single shooting though the results are also
applicable for the multiple shooting approach.

In single shooting typically medium size dense
NLPs have to be solved. State of the art non-
linear programming solvers employ either interior
point methods or sequential quadratic program-
ming (SQP). In both cases either the exact or an
approximate Hessian of the Lagrangian is required
by the nonlinear programming solver. The contri-
bution of this paper is a new methodology for the
fast computation of this Hessian.

Hitherto most single and multiple shooting ap-
proaches employ coarse approximations of the
Hessian by means of quasi-Newton updates since
the computation of the Hessian has been to expen-
sive so far. Vassiliadis et al. (1999) employ second-

Preprints Vol.1, June 6-8, 2007, Cancún, Mexico

105

order variational equations for Hessian computa-
tion yielding a decrease in NLP iterations but an
increase in the computational time.

The novel algorithm presented in this contribution
overcomes the latter drawback. It is based on
second-order adjoint equations. Haug and Ehle
(1982) employ second-order adjoint equations for
the sensitivity analysis of mechanical systems.
Özyurt and Barton (2005) investigate the com-
bination of directional second-order adjoint equa-
tions with automatic differentiation techniques.
The latter approaches are very efficient when deal-
ing with unconstrained optimal control problems
by means of single or multiple shooting. The nov-
elty of this contribution is the introduction of the
concept of composite adjoints (cf. Section 7) to
make the advantages of second-order adjoint sen-
sitivity analysis available also for path constrained
optimal control problems.

2. PROBLEM STATEMENT

We consider a class of Mayer-type optimal control
problems (OCP):

min
u(t),p

Φ(x(tf)) (1)

s. t. ẋ(t) = f(x(t), u(t)) , (2)
x(t0) = x0(p0) ∈ Rnx , (3)
g(x(t), u(t)) ≤ 0 ∈ Rng , (4)
h(x(tf)) ≤ 0 ∈ Rnh , (5)
t ∈ [t0, tf] , (6)

where x(t) ∈ Rnx , u(t) ∈ Rnu , p0 ∈ RP0 ,
f(x(t), u(t)) ∈ Rnx . The final time tf is fixed or
free. In the case of a free final time, OCP can
be transformed in an equivalent optimal control
problem with fixed final time. Without loss of
generality we will assume a fixed final time from
therefore.

Single shooting is one approach to solveOCP. The
basic idea is to substitute the control vector u(t)
by an approximation u(t, p) employing parameters
pij and basis functions φij(t):

ui(t, p) :=
Pi∑

j=1

pij φij(t), pij ∈ R, i = 1, . . . , nu .

(7)

Typically, the φij(t) are constant, linear or cubic
B-splines.

p = (p01, . . . , p0P0 , p11, . . . , pnuPnu
)T ∈ Rnp ,

is the vector of all degrees of freedom.

The path constraints (4) are relaxed by defining
a grid t0 < t1 < t2 < · · · < tN = tf and writing:

g(x(tk), u(tk, p)) ≤ 0, k = 1, . . . N.

The infinite dimensional optimal control problem
is approximated by a finite dimensional nonlinear
program (NLP):

min
p

Φ(x(tf)) (8)

s. t. ẋ(t) = f(x(t), u(t, p)) , (9)
x(t0) = x0(p0) ∈ Rnx , (10)
g(x(ti), u(ti, p)) ≤ 0, i = 1, . . . , N (11)
h(x(tf)) ≤ 0 , (12)
t ∈ [t0, tf] , (13)

which can be considered as a discretization of
OCP. Note that equation (9) is solved by an un-
derlying integration, which justifies the terminol-
ogy. The state x(t) is implicitly dependent from p.
Nevertheless, for notational convenience, we will
refer to the states as x(t) instead of x(t, p). For the
same reason we will write u(t) instead of u(t, p)
and x0 instead of x0(p0). The appreciated reader
should keep in mind that x(t), u(t) and x0 depend
on p.

The Lagrangian of NLP can be stated as

L(p, µ, ν) =Φ(x(tf)) +

(
N∑

k=1

µT
k g(x(tk), u(tk))

)

+ νT h(x(tf)) (14)

with Lagrange multipliers µi ∈ Rng , i = 1, . . . , N
and ν ∈ Rnh .

3. REQUIREMENTS OF GRADIENT BASED
OPTIMIZATION ALGORITHMS

For the solution of generally constrained nonlinear
programs SQP and interior point methods have
proven to be mostly efficient. Both methods re-
quire the gradients of the objective function and
the constraint functions with respect to the un-
knowns p. In case of NLP, these are

dΦ(x(tf))
dp

,
dh(x(tf))

dp
,

dg(x(tk), u(tk))
dp

, k = 1, . . . , N . (15)

Furthermore, these methods require an approx-
imation of the Hessian of the Lagrangian with
respect to p:

Lpp(p, µ, ν) =
d2L(p, µ, ν)

dp2
. (16)

Some optimization algorithms show an improved
robustness and less iterations, if the exact Hessian
instead of an approximation is employed, as shown
by Vassiliadis et al. (1999). Vassiliadis et al. use
second-order forward sensitivity equations to ob-
tain the Hessian and therefore have the drawback

106

of a large computational effort. The number of it-
erations decreases, but the overall computational
time increases.

The focus of this paper is to present a novel
method to compute the exact Hessian (16) to yield
a decrease of the number of iterations and simul-
taneously a decrease of the overall computational
time.

4. FORWARD SENSITIVITY INTEGRATION

The gradients (15) can be computed by the chain
rule, e.g. for 1 ≤ k ≤ N :

dg(x(tk), u(tk))
dp

=
∂g(x(tk), u(tk))

∂x

dx(tk)
dp

+
∂g(x(tk), u(tk))

∂u

du(tk)
dp

.

dx/dp can be calculated by forward sensitivity in-
tegration which is the method of choice in case of a
large number of function gradients to be evaluated
and a moderate number of parameters. The sen-
sitivity equations are obtained by differentiating
(9),(10) of NLP with respect to pi, i = 1, . . . , np:

dẋ

dpi
=

∂f

∂x

dx

dpi
+

∂f

∂u

du

dpi
, (17)

dx

dpi
(t0) =

dx0(p)
dpi

. (18)

5. FIRST-ORDER ADJOINT EQUATIONS

An alternative way to compute the wanted gra-
dient is the so called adjoint sensitivity analysis.
We demonstrate the application of the adjoint
sensitivity analysis with a scalar functional r(x, u)
in order to determine the gradient

dr(x(tk), u(tk))
dpi

, i = 1, . . . , np,

for some k ≤ N .

Instead of using the chain rule, the gradients of
our example are computed directly introducing
the so called adjoint variables λ(t) ∈ Rnx (Cao et
al., 2002). The adjoint variables are computed by
the integration of the first-order adjoint equations:

λ̇(t) = −λ(t)T fx(x(t), u(t)), (19)

λ(tk)T = rx(x(tk), u(tk)), (20)
t ∈ [t0, tk]. (21)

The gradients are computed by the formula

dr(x(tk), u(tk))
dpi

=ru(x(tk), u(tk))
du

dpi
(tk)

+
∫ tk

t0

λT fu
du

dpi
dt

+ λ(t0)T dx0

dpi
. (22)

Suppose that we want to compute all gradients
in (15) by means of first-order adjoint equations.
Then, the total number of adjoint systems to solve
is (15) is N ·ng+nh+1, which can be computation-
ally expensive, especially if N is large. Hence, for
path-constrained optimal control problems, sensi-
tivity equations are the method of choice to obtain
first-order gradients.

6. SECOND-ORDER ADJOINT EQUATIONS

To compute second order sensitivities with respect
to the parameters pi and pj by second-order
adjoint equations, the first-order adjoint equations
(19) – (22) are differentiated with respect to pj

(Özyurt and Barton, 2005):

dλ̇

dpj

T

= − dλ

dpj

T

fx − λT

(
d

dpj
fx

)
(23)

dλ

dpj
(tk) =

(
rxx

dx

dpj
+ rxu

du

dpj

)∣∣∣∣
t=tk

, (24)

t ∈ [t0, tk]. (25)

The second-order derivatives are computed by the
formula

d2r(x(tk), u(tk))
dpidpj

=
(

du

dpi

T

rux
dx

dpj
+

du

dpi

T

guu
du

dpj

)∣∣∣∣∣
t=tk

+
∫ tk

t0

[
dλ

dpj

T

fu
dx

dpi
+ λT fu

d2u

dpidpj

+ λT

(
d

dpj
fu

)
du

dpi

]
dt

+

(
dλ

dpj

T dx0

dpi
+ λT d2x0

dpidpj

)∣∣∣∣∣
t=t0

. (26)

We denote by

λp :=
(

dλ

dp1
, . . . ,

dλ

dpnp

)T

the vector of all second-order adjoint variables.
Since we are only interested in the second-order
derivative of the Lagrangian, on the first sight,
second-order adjoint sensitivity analysis seems
to be the method of choice. Unfortunately, the
ODE-embedded functionals that constitute the
Lagrangian are evaluated at N different points in
time. Following the ordinary second-order adjoint
approach, N different second-order adjoint sys-
tems have to be solved which is not very efficient.

7. COMPOSITE ADJOINTS

In this section, we introduce the concept of so
called composite adjoints and show, how the Hes-

107

sian can be computed by solving only one second-
order adjoint system.

7.1 A homogenous system

We note that (19) together with (23) for j =
1, . . . , np, form a linear time-variant homogenous
DAE system. Introducing

ζ(t) :=
(

λ(t)
λp(t)

)
∈ Rnx·(np+1) , (27)

and defining the matrix function A(t) in accor-
dance with eqns. (19) and (23), the composite
system has the form:

ζ̇(t) = A(t) ζ(t). (28)

It is important to note, that A(t) is independent
of r(x, u). The dependence of the adjoint variable
vector ζ(t) on r(x, u)) is covered by the final
conditions:

ζ(tk) = ζf (tk; r) =




rx(x(tk, u(tk))
T(

rxx
dx

dp1
+ rxu

du

dp1

)∣∣∣
t=tk

.

.

.(
rxx

dx

dpnp

+ rxu
du

dpnp

)∣∣∣
t=tk




,

(29)

with ζf defined in accordance with eqns. (20)
and (24). Let ζ1 and ζ2 be two solutions of the
system (28). Then, for α, β ∈ R, ζ = α ζ1 +β ζ2 is
also a solution, since the system is homogenous.
Furthermore, if we define J(t; r(·)),K(t), L in ac-
cordance with eqn. (25), then, for i, j = 1, . . . , np,
the second-order sensitivities are obtained from

d2r

dp2

∣∣∣∣
t=tk

= J(tk; r) +
∫ tk

t0

K(t) ζ(t) dt + Lζ(t0) ,

(30)
where J(t; r(·)) is the only function which depends
on r(·).
Assume we are interested in a linear combination
of the second-order derivatives

N∑

k=1

αk
d2rk (x(tk), u(tk))

dp2
(31)

of the different functionals rk(x(tk), u(tk)), k =
1, . . . , N , evaluated at N different points in time
t1 < · · · < tN . This is the case, if we are
interested in the Hessian of the Lagrangian (14).
In a straightforward manner, one would formulate
N adjoint systems two get the single derivatives
and then add the results:

ζk(tk) = ζk,f (tk; rk),

ζ̇k(t) = A(t) ζk(t),
t ∈ [t0, tk],

d2rk

dp2
= J(tk; rk) +

∫ tk

t0

K(t) ζk(t) dt + Lζk(t0).

By doing this, we solve N second-order adjoints
systems. In the following, we show how the linear
combination (31) can be obtained by solving one
composite adjoint system.

7.2 Definition of composite adjoints

The main idea and the novelty of this contribution
is to compute a composite adjoint vector ζ(t) ∈
Rnx·(np+1) defined by

ζ(t) :=
N∑

k=l

αkζk(t) , tl−1 < t ≤ tl, l = 1, . . . , N .

Obviously ζ(t) satisfies eqn. (28) for t 6= tk, k =
1, . . . , N . We demonstrate how ζ(t) can be com-
puted. The trajectory ζ(t) is computed in N steps.
In the first step, the interval (tN−1, tN] is treated
by an integration backwards in time:

ζ(tN) = αN ζN,f (tN ; rN) , (32)

ζ̇(t) = A(t) ζ(t) , (33)
t ∈ (tN−1, tN]. (34)

In the k-th step, k = 2, . . . , N , the solution
on the interval (tN−k, tN−k+1] is computed by a
backwards integration as well:

ζ(tN−k+1) = αN−k+1 ζN−k+1,f (tN−k+1, rN−k+1)
+ ζ(tN−k+1+), (35)

ζ̇(t) = A(t) ζ(t), (36)
t ∈ (tN−k, tN−k+1]. (37)

The key point is, that in (35), the final value of
the adjoint system belonging to the (N − k)-th
ODE-embedded functional is added to the value
of the composite adjoint vector. Since
∫ tN

t0

K(t) ζ(t) dt =
N∑

k=1

αk

∫ tk

t0

K(t) ζk(t) dt (38)

and

Lζ(t0) =
N∑

k=1

αk Lζk(t0)

hold, the linear combination of the second-order
derivatives is obtained by

N∑

k=1

αk J(tk; rk) +
∫ tN

t0

K(t) ζ(t) dt + L ζ(t0) .

(39)

8. COMPUTATION OF THE HESSIAN OF
THE LAGRANGIAN

In the preceding sections we founded the prereq-
uisites for the fast computation of the Hessian of
the Lagrangian (14). Setting

rN := Φ+µT
Ng+νT h, ri := µT

i g, i = 1, . . . , N−1,

and αi := 1, i = 1, . . . , N , (40)

108

we have exactly the situation as sketched in sec-
tion 7. Hence, the Hessian of the Lagrangian can
be computed by one integration of one second-
order adjoint system.

9. NUMERICAL CASE STUDY

We demonstrate the application of the proposed
methodology by the optimal control of the van der
Pol oscillator.

9.1 van der Pol oscillator

The problem statement is taken from (Augustin
and Maurer, 2001):

min
u(t)

x3(tf)

s. t. ẋ1 = x2 ,

ẋ2 = (1− x1)2x2 − x1 + u ,

ẋ3 = x2
1 + x2

2 + u2 ,

x(0) = x0 ,

γ − x2(t) ≤ 0 ,

t ∈ [0, tf] .

The parameter settings are tf = 5, γ = −0.4 and
x0 = (1, 0, 0)T .

9.2 Discretization

The control variable is approximated by a piece-
wise constant function on a equidistant grid 0 =
τ0 < ... < τnp = tf :

u(t; p) = pi, t ∈ (τi−1, τi], τi =
i · tf
np

.

The path constraint γ − x2(t) ≤ 0 is relaxed
by pointwise constraints on a equidistant grid
0 = t0 < ... < tρ np = tf with a positive integer ρ:

γ − x2(ti) ≤ 0, ti =
i · tf
ρnp

, i = 0, . . . , ρ np .

9.3 Implementation details

The optimizer IPOPT (Wächter and Biegler,
2006) is chosen to perform the optimization, be-
cause it is capable to employ either BFGS updates
of the Hessian or the exact Hessian supplied by the
user. BFGS updates are a technique to construct a
coarse approximation of the Hessian by first-order
gradient information (Fletcher, 1970). The latest
pre-3.0 Fortran version of IPOPT is employed. As
integrator the explicit Runge-Kutta code DOP853
(Hairer and Wanner, 1993) is employed for the
state and first-order sensitivity integration. The

error tolerance for the integration is set to Tol =
10−10, both for the absolute and the relative error.

For the integration of the second-order adjoint
system two alternative integration schemes were
utilized. On the one hand, again DOP853 with
Tol = 10−10 is employed. On the other hand a
simple explicit Runge-Kutta scheme of order 2
without error control is employed by just taking
one Runge-Kutta step from ti to ti−1 yielding an
inaccurate Hessian for coarse grids if ρ·np is small.
The reason for this approach is that second-order
sensitivities usually don’t need to be as accurate
as first-order sensitivities and the computation of
the Hessian can be sped up significantly by using
a low-order integration scheme. For the Hessian
evaluation by means of second order adjoint equa-
tions, the states and first-order sensitivities are
stored at the points ti, i = 0, . . . , ρ np. Instead of
using an interpolation for the backwards integra-
tion of the first- and second-order adjoint system,
the differential equations for the states and first-
order sensitivities are solved simultaneously. The
quadrature problem in (26) is reformulated as
ODE and solved simultaneously as well. A starting
vector pT = (0.7, . . . , 0.7) is chosen.

The optimizer IPOPT evaluates the constraint
Jacobian prior to a call of the Hessian. Conse-
quently in the implementation the trajectories of
the states and sensitivities are stored during the
Jacobian evaluation and need not be recalculated
during the Hessian evaluation.

All computations are performed on a Windows XP
PC with a 3.0 GHz Intel Pentium D processor and
a memory of 1024 MB using a single core. The nu-
merical test examples are coded in Fortran 95 and
compiled with the Intel Fortran compiler (version
9.1) utilizing the ”Maximize Speed”-optimization
option.

9.4 Results

The main purpose of this numerical case study is
not a performance comparison but a demonstra-
tion of the general applicability of the proposed
algorithm.

In Table 1 the number of iterations of IPOPT is
presented: BFGS refers to IPOPT using BFGS-
updates, RUNGE refers to the inaccurate Hes-
sians computed by the simple two-order Runge-
Kutta scheme and DOP853 refers to the Hessian
computed by DOP853. The number of iterations
of IPOPT (Nit) has the following relations to
the number of Jacobian evaluations (Njac) and
Hessian evaluations (Nhess):

Njac = Nit + 2, Nhess = Nit + 1 .

Hence a comparison of the number of iterations
with the average computational times for a Ja-

109

np ρ BFGS RUNGE DOP853

50 1 24 13 12
50 2 27 15 15

200 1 23 15 15
200 2 27 18 18
500 1 26 18 18
500 2 29 19 19

Table 1. Number of iterations

np ρ SENS RUNGE DOP853

50 1 0.005 < 0.001 0.013
50 2 0.008 0.001 0.015

200 1 0.043 0.012 0.120
200 2 0.08 0.02 0.23
500 1 0.25 0.08 0.73
500 2 0.50 0.16 1.48

Table 2. Computational times in sec-
onds

np ρ SENS RUNGE DOP853

50 1 0.15 0.10 0.25
50 2 0.35 0.20 0.45

200 1 1.1 1.0 3.1
200 2 2.5 2.2 6.2
500 1 7.2 6.7 19.1
500 2 16.7 14.0 40.8

Table 3. Total time spent in function
evaluations in seconds

cobian or Hessian evaluation gives information
about the overall computational effort. The aver-
age computational times for one Jacobian evalu-
ation (SENS), one low-order inaccurate Hessian
evaluation (RUNGE) and one accurate Hessian
evaluation (DOP853) are given in Table 2. The
total time spent in function evaluations is given
in Table 3. The results show that the supplement
of the ”exact” Hessian always reduces the number
of iterations in comparison with BFGS updates.
Even if the Hessian is very inaccurate as in the
first test case, where only 10 low-order Runge-
Kutta steps were performed to compute the Hes-
sian, the number of iterations decreases. Since
the low-order computation of the Hessian is even
faster than the Jacobian evaluation the overall
solution of the optimization problem is sped up
in comparison to the BFGS updates.

Employing a highly accurate Hessian by the high-
order code DOP853 still reduces the number of
iterations but because of the higher computa-
tional effort for a Hessian evaluation, the overall
computation time increases. Though the compu-
tational effort for the highly accurate Hessian is
still acceptable. Employing alternative methods
like finite differences or second-order sensitivity
equations would certainly lead to poorer compu-
tational times.

10. CONCLUSIONS AND OUTLOOK

A new methodology to efficiently provide the
Hessian of the Lagrangian of in single shooting

has been proposed. The algorithm employs the
novel concept of composite adjoints to reduce the
computational effort of a Hessian evaluation. An
ad hoc-implementation of the algorithm based on
explicit Runge-Kutta schemes has been success-
fully applied to a numerical case study showing
the potential of this algorithm. Although not an
issue of this contribution that algorithm can easily
be adapted for multiple shooting.

Future research focuses on a more reliable and
more efficient implementation of the algorithm
by utilizing integration schemes for stiff and
differential-algebraic systems. Furthermore the
exploitation of exact Hessians for on-line appli-
cations will be investigated.

REFERENCES

Augustin, Dirk and Helmut Maurer (2001). Com-
putational sensitivity analysis for state con-
strained control problems. Annals of Opera-
tions Research 101, 75–99.

Cao, Y., S. Li, L. Petzold and R. Serban (2002).
Adjoint sensitivity analysis for differential-
algebraic equations: The adjoint dae system
and its numerical solution. SIAM J. Sci.
Comput. 24(3), 1076–1089.

Fletcher, R. (1970). A new approach to vari-
able metric algorithms. The Computer Jour-
nal 13, 317–322.

Grötschel, M., S. O. Krumke and J. Rambau
(2001). Online Optimization of Large Scale
Systems. Springer, Berlin.

Hairer, E. and G. Wanner (1993). Solving Ordi-
nary Differential Equations I – Nonstiff Prob-
lems. Springer, Berlin.

Haug, E. J. and P. E. Ehle (1982). Second-order
design sensitivity analysis of mechanical sys-
tem dynamics. Internat. J. Numer. Methods
Engrg. 18, 1699–1717.

Özyurt, Derya B. and Paul I. Barton (2005).
Cheap second order directional derivatives of
stiff ode embedded functionals. SIAM J. Sci.
Comput. 26(5), 1725–1743.

Rawlings, J. B. (2000). Tutorial overviwe of model
predictive control. IEEE Control Systems
Magazine.

Vassiliadis, V. S., E. B. Canto and J. R. Banga
(1999). Second-order sensitivities of general
dynamic systems with applications to opti-
mal control problems. Chemical Engineering
Science 54(17), 3723–3955.

Wächter, A. and L. T. Biegler (2006). On the im-
plementation of a primal-dual interior point
filter line search algorithm for large-scale non-
linear programming. Mathematical Program-
ming 106(1), 25–57.

110

