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Abstract: This work considers the regulator problem for unstable linear input-delay
systems. A discrete time control strategy intended to compensate the effects of the
involved time delay and to stabilize the overall closed loop system, is designed. The
proposed control strategy provides a prediction of ”all” the internal information in
the system, which is used to solve the considered regulation problem in a similar
way that it is used in a classical Smith predictor compensator Copyright c©2007

IFAC.
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1. INTRODUCTION

Time delays appear commonly in process control
problems, because of the distance velocity lags,
recycle loops, and composition analysis loops, or
in the approximation of higher-order systems with
a lower-order system with a time delay. Also, time
delay systems can be due to natural modeling, for
example, in the case of population and chemical
processes modeling (Kolmanovskii and Myshkis
1992). Many controllers have been developed for
stable processes. When a time delay affects the
input (or output) signal of the system, a common
approach is to eliminate the effect of the delayed
signal to deal with a system free of delay. An
approximation approach uses Taylor or Pade ex-
pansions of the delay operator (Marshall 1979, Hu

and Wang 2002). For linear systems, the most
common strategy is the so-called Smith predictor
compensator (SPC) (Smith 1957, Palmor 1996),
which provides an estimate of future outputs to be
incorporated within a feedback control function
(see Figure 1). The main drawback of the original
SPC was related to the class of systems were it
could be implemented, since it was restricted to
stable plants. In order to overcome this problem, a
modification that allows the consideration of pro-
cesses with an integrator and long time delay was
reported (Astrom et al. 1994, Matausek and Micic
1996, Normey-Rico and Camacho 2001). A SPC
for unstable plants was proposed by (Xian et al.

2005). Further results by considering a discrete-
time representation of the process was studied in
(Torrico and Normey-Rico 2005).
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This paper focuses on the regulator problem for
unstable time delayed linear systems. Note that
the classical SPC cannot be used for this class of
systems because the process instability forbids a
stable cancellation of the time delay operator. To
solve this situation, a discrete predictor schema is
proposed in order to estimate ”all” the internal
information, i.e., starting from a discrete state
space model of the plant and the delay, not only
the discrete states of the plant are estimated but
the ”internal” delayed information.

To carry out the control strategy, using the in-
ternal estimated information obtained, a discrete
static state feedback control is achieved.

The paper is organized as follows. Section 2
presents the class of systems and the classical
SPC is briefly recalled. Section 3 develops the
prediction discrete-time strategy. To show the per-
formance of the proposed discrete time control
strategy, some simulation experiments are pre-
sented in Section 4. Finally, Section 5, presents
some conclusions.

2. PROBLEM FORMULATION

This section presents the class of systems involv-
ing time delays at the input signal (or equiva-
lently, at the output). Consider the following class
of (possibly unstable) SISO linear systems with
delayed input:

˙̄x(t) = Āx̄(t) + B̄u(t − τ)
y(t) = C̄x̄(t)

(1)

where x̄ ∈ R
n is the state vector, u ∈ R is the

input, y ∈ R is the output, and τ ≥ 0 is the
time-delay associated to the input. Ā ∈ R

n×n,
B̄ ∈ R

n×1 and C̄ ∈ R
1×n are matrices and

vectors of system parameters and are assumed
to be known. The input-output representation
of system (1) can be obtained as usually by
considering the Laplace transform of (1) that
leads to the following expression:

sX̄(s) = ĀX̄(s) + B̄e−τsU(s)
Y (s) = C̄X̄(s).

This expression can be rewritten as

Y (s)

U(s)
= C̄

[
sI − Ā

]
−1

B̄e−τs

=
N(s)

D(s)
e−τs = G(s)e−τs

(2)

where N(s) and D(s) are polynomials in the
variable s. Note that a traditional output feedback
control strategy as

U(s) = [R(s) − Y (s)]Q(s)

leads to a closed loop system of the form

Y (s)

R(s)
=

Q(s)G(s)e−τs

1 + Q(s)G(s)e−τs

Fig. 1. The Smith Scheme

where the term e−τs in the denominator compli-
cates the stability analysis of the feedback system.

2.1 Smith predictor compensator

A classical SPC for a system of the class (2) is
shown in Figure 1. The main idea behind a SPC
strategy is based on the modeling of the system
as

W (s) = G(s)U(s) (3a)

Y (s) = e−τsW (s), (3b)

and to design an estimator (predictor) for the
intermediate signal W (s) (not available for mea-
surement). The smith predictor control scheme
use this signal in the controller Q(s) depicted also
in Figure 1, in order to compensate the effects
of the time delay e−τs on the overall closed loop
system. It is easy to see that the closed loop
system is for the compensation strategy of Figure
1 it is given by,

Y (s)

R(s)
=

G(s)Q(s)

1 + G(s)Q(s)
e−τs

Under ideal conditions (i.e., exact knowledge),
the SPC allows to keep out of the closed loop
the time delay term. Unfortunately, the classi-
cal Smith predictor scheme is able to deal only
with stable plants (Palmor 1996, Smith 1957),
and several modifications of the same strategy can
only manage with some special class of unstable
systems (Astrom et al. 1994, Majhi and Ather-
ton 1998, Matausek and Micic 1996, Torrico and
Normey-Rico 2005, Xian et al. 2005).

In that follows, a methodology is presented in
order to provide a discrete prediction of the in-
ternal plant information before the delay. But also
the intermediate delay information is estimated in
order to use ”all” the internal information to im-
plement an estimated ”extended” state feedback
controller.

3. PREDICTION STRATEGY

In order to describe the alternative prediction
strategy proposed in this work, consider the dis-
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cretization (Astrom and Wittenmark 1997) of sys-
tem (1) (equivalently, 2) subject to a sampling
period T and sunder the assumption that the
input time delay satisfies τ = αT . For doing
this, consider now G(z), the z-transform of G(s),
under the action of a sampling and hold device
(a zero order hold for instance). A discrete state
representation (observable and controllable) can
easily be obtained for G(z) (or equivalently for
system (1) with τ = 0 (system without delay) as,

v(k + 1) = Apv(k) + Bpu(k)
w(k) = Cpv(k) + Dpu(k)

(4)

Note that in the case of a zero order hold, the
matrices AP , BP , CP can be directly obtained
from system (1) with,

Ap = eĀT = L−1(sI − Ā)−1 |t=T

Bp =

∫ T

0

eĀ(T−τ)B̄dτ

Cp = C̄, Dp = D̄

where L−1 is the inverse of the Laplace operator.
In order to simplify the developments of the
paper it is assumed that the discretization process
produces a system for which Dp = 0.

The discrete-time representation for the delay
term e−hs can be easily found as z−k. A dis-
crete state space representation for this model
produces,

xd(k + 1) = Adxd(k) + Bdud(k) (5)

y(k) = Cdxd(k)

with

xd(k) =
[
xd1(k) xd2(k) · · · xdα(k)

]T

Ad =




0 1 0 · · · 0

0 0 1
... 0

...
...

. . .
. . .

...
0 0 0 · · · 1
0 0 0 0 0



∈ R

α×α

Bd =
[
0 · · · 0 1

]T
∈ R

α×1

Cd =
[
1 0 · · · 0

]
∈ R

1×α.

From the basic properties of the z-transform, the
cascade systems G(z) and z−α (or (4) and (5)) are
equivalent to system G(z)z−α. Then, considering
ud(k) = w(k) the complete discrete-time model
(observable) for system (1) takes the form,

x(k + 1) = Ax(k) + Bu(k) (6)

y(k) = Cx(k)

where x(k) = [ xd(k)T v(k)T ]T , and the α-row

of A is [ 0 .. 0 Cp ] and xα(k) = w(k). Then, a
discrete state predictor for the original system can
be design as a state observer for (6), described as
follows. Let us define,

x̂(k) = [ x̂d(k)T v̂(k)T ]T ,

the prediction x̂(k) of the signal x(k) is obtained
by a predictor of the form,

x̂d(k + 1) = Adx̂d(k)
+Bdŵ(k) − G1ey(k)

(7)

v̂(k + 1) = Apv̂(k) + Bpu(k) − G2ey(k)
ŵ(k) = Cpv̂(k)

(8)

where

ey(k) = ŷ(k) − y(k), ŷ(k) = x̂1(k)

and

G1 = [ g1 g2 .. gα ]T

G2 = [ gα+1 gα+2 .. gα+n ]T .

Or simply,

x̂(k + 1) = Ax̂(k) + Bu(k) − G[ŷ(k) − y(k)] (9)

ŷ(k) = Cx̂(k)

with G = [ GT
1 | GT

2 ]T , G1 ∈ R
α×1 G2 ∈ R

n×1.

The structure of the proposed predictor it is
shown in Figure 2.

Considering the preceding developing it is now
possible to formally state the following lemma,
without need of any additional proof.

Lemma 1. Consider system (1) and the compen-
sator (7)-(8). It is always possible to find a real
valued vector G = [ GT

1 | GT
2 ]T , G1 ∈ R

α×1

G2 ∈ R
n×1 such that the output x̂(k) of the

compensator (7)-(8) provides the estimation of the
signal x(k) for the original system (6). This is,
lim

K→∞

[x̂(k) − x(k)] = 0.

Note that x̂d(kT ) as a estimation of xd(kT ) =[
xd1(kT ) xd2(kT ) · · · xdα(kT )

]T
, is a prediction

of the delayed output y(kT ), i.e., x̂d1(kT ) =
ŷ(kT ), x̂d2(kT ) = ŷ(kT +T ), ... x̂dα(kT ) = ŷ(kT +
αT ) = ŵ(kT ). Then, the main idea of this work
is to use this information added to v̂(k), the state
estimated of the plant in order to build the control
law, just computing F such that the spectrum of
(A − BF ) is a stable set (and placing the roots
following performance specifications) . Then we
can implement the discrete control law as u(k) =
r(k) − Fx̂(k).

4. SIMULATION RESULTS

The aim of this section is to present some aca-
demic examples, all of them containing a dead-
time in the forward path, to illustrate the good-
ness of the proposed prediction strategy. The first
case study consists of an unstable first order sys-
tem taken from (Xian et al. 2005). The perfor-
mance of the system with the proposed predictor
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Fig. 2. General predictor structure

are compared with the results in (Xian et al. 2005)
using the same compensator used in the referred
paper.

The second case consists of a more complicate
plant: a second order unstable system. It is ex-
posed to parametric perturbations and to different
initial conditions.

Example 1. Consider the unstable delayed sys-
tem(Xian et al. 2005),

Y (s)

U(s)
=

4e−5s

10s − 1
= G1(s)e

−5s. (10)

A discrete-time version of this system, considering
a ZOH is given by,

G(z) =
0.4207z−5

(z − 1.105)
= G1(z)z−5.

Note that the term G1(z) corresponds to the sub-
system without delay G1(s) and z−5 correspond
to the discretization of the time delay term e−5s.
Now, an observable representation in state vari-
ables can be obtained by considering,

A =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0.4207
0 0 0 0 0 1.105




,

B =
[
0 0 0 0 0 1

]T
,

C =
[
1 0 0 0 0

]
,

D = [0] .

In order to stabilize (A − GC), the vector G is
computed as,

G = [1.005, 1.1105, 1.2271, 1.356, 1.4984, 3.9355]

that locates the poles of the system at

[0.1, 0, 0, 0, 0, 0].

The controlled here proposed is then

u(kT ) = (1/.8923)r(kT ) − (1.5)F x̂(kT ) (11)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

O
u

tp
u

t

Fig. 3. y(t) (solid line) of system (10)-(11) versus
the one (dashed line) obtained in (Xian et. al
2005).

with F computed in order to stabilize (A − BF ).
With F = [0, −0.0003, 0.00059, −0.0713, 0.4754,
0.4050] the poles are relocated at

{0.2, 0.1, 0.1, 0.1, 0.1, 0.1} .

The controller used in (Xian et al. 2005) is

u(kT ) = (1.25)r(kT ) − (1.5)ŵ(kT ) (12)

with r(k) a unitary step input.

In the following tree figures it is compared the
output y(t) (solid line) of system (10)-(11) versus
the output (dashed line) obtained in (Xian et al.

2005). In Figure 3 we can observe that although
the performance of both systems is very similar,
the controller here proposed provides a faster
answer. In Figure 4 is possible to see that when the
time delay is set to τ = 4.5 sec. the controller here
proposed presents a better performance. A similar
conclusion can be obtained in Figure 5 where a
time delay of τ = 5.5 sec. is used.

Example 2. Consider now the unstable second
order time-delay system,
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Fig. 4. Time delay τ = 4.5
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Fig. 5. Time delay τ = 5.5

Y (s)

U(s)
=

(s + 2)e−0.4s

(s + 1)(s − 2)
.

A discrete-time version of this system, considering
a ZOH and T = 0.1 sec . is,

G(z) =
0.11588(z − 0.8182)z−4

(z − 0.9048)(z − 1.221)
.

In this case the observable representation in state
space variables can be obtained as,

A =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −0.0948 0.1159
0 0 0 0 0 1
0 0 0 0 −1.1050 2.1260




B =
[
0 0 0 0 0 1

]T

C =
[
1 0 0 0 0 0

]
, D = [0] .

The closed loop poles of the predictor are located
at [0.1, 0, 0, 0, 0, 0] by considering a vector,

G = [2.026, 3.202, 4.569, 6.175, 52.799, 112.909].

The controlled here proposed is

u(kT ) = r(kT ) − (1.5)Fx̂(kT ) (13)
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Fig. 6. Ideal case (solid line) and perturbed case
(dashed line)

with F computed in order to stabilize (A −
BF ). With F = [−0.0076, 0.1768, −1.4969,
5.9230, −0.0415, 0.0260] the poles are relocated
at {0.6, 0.5, 0.4, 0.3, 0.2, 0.1} .

In Figure 6 it is shown performance of the control
strategy: The solid line shows the case of ideal
conditions and the dashed is the response of the
system when the plant parameters are perturbed
in the following way:

Gp(s) =
(s + 2)e−0.4s

(s + 0.9)(s − 1.8)
.

It is possible to appreciate the adequate perfor-
mance of the system in both situations.

5. CONCLUSIONS

In this work is considered the regulation problem
for a liner time-invariant time-lag system. Based
on the exact discrete time model of the system
it is proposed a discrete-time control strategy
intended to compensate the effects of the involved
time delay and to stabilize the overall closed loop
system. The regulation strategy is based on the
design of a discrete time observer that provides
a prediction of ”all” the internal information in
the system (the discrete states variables). The
propose methodology provides a simple way to
extend the ideas of the classical smith predictor
to a wider class of time-lag systems that are open
loop unstable.
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