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Abstract: In this paper it is presented a procedure for closed loop controller tuning
using relay experiments. The experiments are used to evaluate gain and phase
margins. The controller redesign is performed by minimizing a frequency domain
criterion based on gain and phase margins in addition to crossover frequency.
The procedure may be repeated iteratively. Simulation examples illustrate the
properties of the design scheme. Copyright c©2007 IFAC
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1. INTRODUCTION

In many plants, process control usually is imple-
mented through many control levels. The PID
controller is often used in regulatory levels to
provide the process robust stability and fast
response to load disturbances (Skogestad and
I.Postlethwaite, 2005). In most systems, a simple
PI controller is sufficient to handle the regulatory
level functions. Frequently this controllers need
to be redesigned under operation due to poor
performance.

In this context, techniques for identification and
controller redesign using closed-loop data have
become very attractive. The closed-loop identifi-
cation doesn’t cause stops in system operation un-
like open-loop identification. Other reasons which
can be listed are demands on safety in process
operation, unstable processes and restrictions in
production. Its has also been argued that in closed
loop it is possible to obtain representative re-
stricted complexity process models in an interest-
ing frequency range which can be used to redesign
controllers such as PI and PID (Albertos and
A.Salas, 2002).

The redesigned controller specifications may be
expressed in terms of gain and phase margins that
are classical measures of robustness and together
with the crossover frequency represent the time
performance of the closed-loop as well. Several
gain and phase margin tuning methods have been
proposed in literature. Some are based on graphi-
cal methods which are not suitable for PID auto-
tuning, or simplified equations using approxima-
tion what do not guarantee that the specification
will be achieved. There are techniques based on
numerical methods also as the one presented in
(A. Karimi and R.Longchamp, 2003). Its major
drawback is that is not suitable for non-minimum
phase systems. Other methods are based on sim-
ple models as the one presented in (W.K. Ho and
L.S.Cao, 1995).

Model based tuning techniques that rely only
on simple dynamics may have poor performance
when the process has a too complex dynam-
ics. For example, decoupled process that usu-
ally results in complicated diagonal elements
with non-minimum phase behavior (Nordfeldt and
T.Hägglund, 2006).
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The use of good information provided by specific
relay experiments together either with accurate
simple models or special experiments on interest-
ing frequencies can overcome those problems.

In this paper is proposed a method for itera-
tive controller evaluation and autotuning based
on the knowledge of Gain and Phase Margins
and crossover frequency. It is established a fre-
quency criterion that is optimized using a gra-
dient method. The numerical problem is solved
using closed loop frequency information together
with either restricted complexity models accu-
rate on the interesting frequency range using con-
strained optimization for identification or esti-
mation through specific relay based experiments.
Open loop experiments are not necessary and the
proposed method can be applied to a large number
of processes types including non-minimum phase
and time delay dynamics.

The paper is organized as follows. Initially the
tuning technique will be presented. After that
the used experiments and relevant information
obtained will be described. Following it will be
explained how experimental data can be used
to solve the problem using representative simple
models or frequency estimation. Finally simula-
tion examples illustrate the effectiveness of the
proposed method.

2. PROBLEM STATEMENT

Consider the closed loop shown in Fig. 1. The
process transfer function is given by G (s) while
the controller is C (s) = Kp(1 + 1

Tis
). The closed

loop transfer function from the reference signal
r (t) to the process output y (t) is

T (s) =
Y (s)
R (s)

=
L (s)

1 + L (s)
(1)

where L (s) = G (s)C (s) is the Loop Gain Trans-
fer Function.
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+

-
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G(s)C(s)
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w

Fig. 1. The Closed Loop.

The crossover and critical frequencies are ωg and
ωc. The Phase Margin (φm) is the frequency point
where

6 L(jωg) = −π + φm and |L(jωg)| = 1.

The Gain Margin (Am) is defined as

6 L(jωc) = −π and |L(jωc)| = 1
Am

.

The problem statement is: Given a closed loop
system, evaluate robustness and performance

through Gain and Phase Margins plus the crossover
frequency estimation using closed loop experi-
ments. If necessary, redesign the controller to iter-
atively and safely match the desired specifications.

3. THE CONTROLLER REDESIGN
PROCEDURE

The controller redesign is based on optimization
of a frequency criterion that is defined as follows:

J(ρ) =

[(
ωg − ωd

ωd

)2

+
(

φm − φd

φd

)2

+
(

Ku −Kd

Kd

)2
]

where ρ = [Kp;
Kp

Ti
] is the controller parameter

vector, ωd and ωg are the desired and measured
crossover frequencies, φm and φd are the measured
and desired phase margins, Ku is the loop gain
magnitude at the critical frequency and Kd is the
inverse of the desired gain margin Ad.

The controller parameters are obtained using a
gradient based optimization technique, the itera-
tive Newton’s formula

ρi+1 = ρi − γiR
−1J ′(ρi).

To solve this numerical problem is necessary com-
pute the Gradient and the Hessian,J ′(ρi) and R
respectively.

The algorithm will converge if the Hessian exists
and is positive definite, even if the gradient is
approximated. The choice of the parameter γ is
very important to convergence (Luenberger, 1965)
and brings to an iterative tuning strategy.

The gradient is given by

J ′(ρ) =
(

ωg − ωd

ω2
d

)
∂ωg

∂ρ
+

(
φm − φd

φ2d

)
∂φm

∂ρ

+
(

Ku −Kd

K2
d

)
∂Ku

∂ρ

and Hessian can be computed as

R =
1
ω2

d

∂ωg

∂ρ
(
∂ωg

∂ρ
)T +

1
φ2

d

∂φm

∂ρ
(
∂φm

∂ρ
)T

+
1

K2
d

∂Ku

∂ρ
(
∂Ku

∂ρ
)T

where the second order derivatives have been sup-
pressed to avoid a non-positive definite Hessian.

The problem solution requires the computation of
some derivatives what is made using the frequency
response functions features at the critical and
crossover frequencies.

This problem is solved in (A. Karimi and R.Longchamp,
2003) approximating the derivatives to permit the
use of Bode’s Integrals. In this paper derivative
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approximations are not used which makes the pro-
cedure applicable to a larger number of processes
types.

The derivative ∂ωg

∂ρ is computed observing that
between optimization iterations the magnitude of
the loop gain is one at the crossover frequency

∂ |L(jωg)|
∂ρ

= 0

what results in

∂ωg

∂ρ
= −

|G(jωg)| ∂|C(jωg)|
∂ρ(

|C(jωg)| ∂|G(jω)|
∂ω |ωg + |G(jωg)| ∂|C(jω)|

∂ω |ωg

) .

For the Phase Margin derivative ∂φm

∂ρ it follows
that at ωg

∂ 6 L(jωg)
∂ρ

=
∂ 6 C(jωg)

∂ρ
+

+
(

∂ 6 C(jω)
∂ω

|ωg
+

∂ 6 G(jω)
∂ω

|ωg

)
∂ωg

∂ρ
.

Finally, the computation of ∂Ku

∂ρ uses

∂ |L(jωc)|
∂ρ

= |G(jωc)| ∂ |C(jωc)|
∂ρ

+
(
|C(jωc)| ∂ |G(jω)|

∂ω
|ωc + |G(jωc)| ∂ |C(jω)|

∂ω
|ωc

)
∂ωc

∂ρ

and

∂ωc

∂ρ
= −

(
∂ 6 C(jω)

∂ω
|ωc +

∂ 6 G(jω)
∂ω

|ωc

)−1
∂ 6 C(jωc)

∂ρ

where was used the fact that between iterations
at the critical frequency

∂ 6 L(jωc)
∂ρ

= 0.

The solution presented here can be easily ex-
tended to PID controllers.

4. THE RELAY EXPERIMENTS

The necessary information for controller optimiza-
tion is estimated using the following Gain Margin
and Phase Margin experiments. This experiments
are applied to closed loop systems.

4.1 Gain Margin Experiment

The standard relay test is used to estimate the
critical point and frequency. It can be shown (see
(Schei, 1994)) that if this relay test is applied to
a closed loop system, with transfer function T (s),
the limit cycle occurs at the closed loop critical
frequency and the gain margin can be computed
from the loop gain

L (jωc) = G (jωc)C (jωc) ∼= m

1−m
.

m is the magnitude of T (s) at the critical fre-
quency.

4.2 Phase Margin Experiment

A general relay procedure to estimate the fre-
quency point for which a given transfer function
has a desired gain is presented in (Arruda and
P.R.Barros, 2003). If the loop-gain is under test,
the feedback structure is presented in Fig. 2.

Fig. 2. Loop Gain Transfer Function Estimation.

This procedure allows the estimation of the fre-
quency at which the loop transfer function mag-
nitude is close to r. Selecting r = 1, the current
gain crossover frequency ωg and the phase margin
can be estimated. In this case the scheme reduces
to the one presented in (Schei, 1992).

5. PARAMETERS ESTIMATION

The information obtained through the Relay Ex-
periments are used to estimate the necessary pa-
rameters for computation.

Two approaches are proposed in this paper using
either good approximate models close to the crit-
ical and crossover frequencies or frequency esti-
mation through relay based generated excitations.
Both are suitable for any sort of process given the
relay feedback systems develops limit cycle.

The frequency response is estimated using the
DFT on the reference yr and output signals y,
computing the closed loop gain Ti and then recov-
ering the loop gain (Li) using the loop equations

Li(jω) =
Ti(jω)

1− Ti(jω)
.

5.1 Model-Based Procedure

In this paper the used models are first-order plus
dead-time (FOPDT) continuous-time represented
by

G (s) =
b

s + a
e−θs.

The model identification is performed using closed
loop time-frequency data to estimate two continuous-
time models. The time data is discrete in time and
frequency domain equalities constraints are used
to accurate the model close to the crossover fre-
quency and the critical frequency, i.e. Ĝ (jω̂g) and
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Ĝ (jω̂c) respectively. The procedure solves a time
least-squares problem subjected to a constraint in
frequency. The available data is discrete-time and
the constraint is obtained through the process fre-
quency response on the first harmonic of the relay
experiments signals. Details of the technique can
be found in (G. Acioli Jr and P.R.Barros, 2006).

The derivatives calculated using the model are
given by

∂ 6 G(jω)
∂w

=
a

ω2 + a2
− θ

and
∂ |G(jω)|

∂w
=

−bω

(ω2 + a2)1.5

It should be noted that no approximations are
necessary. An advantage of the use of models is
to provide a good guess to project parameters
specifications.

5.2 Estimation-Based Procedure

An alternative approach estimating the deriva-
tives with respect to frequency is also considered
here.

To do that, ie to estimate the frequency responses
at additional frequencies, two square wave excita-
tion signals can be generated based on the critical
and crossover frequency estimated using the relay
experiments similarly to the procedure applied in
(Berger and Barros, 2005). Let us choose frequen-
cies 1.1ωc and 1.1ωg. This procedure will need
4 experiments instead of 2. The derivatives are
estimated as follows:

∂ 6 G(jω)
∂w

' 6 G(j1.1ω)− 6 G(jω)
1.1ω − ω

and

∂ |G(jω)|
∂w

' |G(j1.1ω)| − |G(jω)|
1.1ω − ω

An advantage of this approach is no need for a
process model. However, more experiments are
necessary what it is time consuming.

6. SIMULATION EXAMPLES

In this section three representative simulation
examples are shown which illustrate the use of
the technique. The noise power applied during
identification is 0.001 and the DFTs are computed
evaluating just one period of the signals. The
closed loop time response is simulated applying a
step of magnitude 1 on the setpoint and after that
step disturbance of magnitude 0.1 on the process
output. The crossover frequency is measured in
rad/s and the phase margin in degrees. At the
first two example it is used γi = 1.

6.1 Example 1

The process is given by

G(s) =
(−0.3s + 1)(0.08s + 1)

(2s + 1)(s + 1)(0.04s + 1)(0.2s + 1)(0.05s + 1)3
.

and the initial controller designed using the
Ziegler-Nichols Step Response Method (Ziegler
and N.B.Nichols, 1942) is

Ci(s) = 2.69(1 +
1

3.90s
).

Initially Am = 1.67 and φm = 32. In this case, the
estimated crossover frequency was ω̂g = 0.87.

The estimated model using Gain Margin experi-
ment data is

Gmg(s) =
0.1729

s− 0.5782
e−1.1253s.

The estimated model using Phase Margin experi-
ment data is

Gmf (s) =
0.3196

s− 0.3056
e−0.4815s.

It should be observed that ARX models estimated
in closed-loop may be unstable even if the process
is stable (Albertos and A.Salas, 2002). It is desired
Ad = 2, φd = 50 and ω̂d = 1.4ω̂g. As a model is
known (Gmf ), the desired crossover frequency can
be chosen considering the performance that can be
achieved without sacrificing robustness (Albertos
and A.Salas, 2002). The redesigned controller us-
ing the model-based procedure is

Crm(s) = 1.8(1 +
1

4.47s
).

Alternatively, the computations can be executed
using only frequency estimate data. The re-
designed controller using the estimation based
procedure is

Cre(s) = 1.91(1 +
1

3.29
).

In table 1 the frequency response points and its
derivatives using frequency and models estimation
are compared with the actual ones.

Table 1.

Pr ocess Model Estimated

|G(jωc)| 0.2112 0.0786 0.2138
∂|G(jω)|

∂w
|ωc −0.2239 −0.0724 −0.2388

∂ 6 G(jω)
∂w

|ωc −1.1336 −1.3881 −0.9400

|G(jωg)| 0.3810 0.3739 0.3750
∂|G(jω)|

∂w
|ωg −0.4996 −0.3529 −0.4061

∂ 6 G(jω)
∂w

|ωg −1.6405 −0.8389 −1.0973

It can be seen that the derivatives obtained using
the models are not accurate close to ωc. The
results obtained using the model-based procedure
are closer to the Phase Margin specification be-
cause the gradient at the critical frequency is
smaller and not accurate. This can be noted at
the Nyquist plots also (Fig.3 and Fig.4).
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Fig. 3. Nyquist Diagram for the Model-Based
Tuning (Example 1)
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Fig. 4. Nyquist Diagram for the Estimation-Based
Tuning (Example 1)

The time response is shown in Fig.5 and Fig.6.
The technique has improved the system stability
margin and time response using both estimation
procedures. The estimation-based procedure has
presented better results. Therefore, in the follow-
ing examples, only it will be shown.
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Fig. 5. Time Response for the Model-Based Tun-
ing (Example 1)

6.2 Example 2

The process is given by

G(s) =
(6s + 1)(3s + 1)

(10s + 1)(8s + 1)(s + 1)
e−0.3s.

and the initial controller is

Ci(s) = 5.94(1 +
1

6.4s
).

It was designed using the SIMC-PI Rules(Skogestad
and I.Postlethwaite, 2005). The initial actual Gain
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Fig. 6. Time Response for the Estimation-Based
Tuning (Example 1)

and Phase Margins are respectively 4.23 and 93.5,
the estimated ones are 5.65 and 100. The esti-
mated crossover frequency was ω̂g = 0.64. It is
desired improve system response. The new specifi-
cation are Ad = 3.5, φd = 80 and ω̂d = ω̂g. In this
case the tuning procedure is repeated iteratively,
two iterations are used to show the convergence
of the method. The final controller is

Cre(s) = 6.53(1 +
1

3.81s
).

The final crossover frequency is 0.82. The results
are shown in Fig.7 and Fig. 8. It can be noted that
performance and stability have been improved.

−1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5
Initial
First Iteration
Second Iteration
Desired Specifications
Initial Estimates

Fig. 7. Nyquist for the Estimation-Based Tuning
(Example 2)
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Fig. 8. Time Response for the Estimation-Based
Tuning (Example 2)

6.3 Example 3

The process is given by
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G(s) =
1

(s + 1)8
.

and the initial controller designed using the
Ziegler-Nichols Step Response Method is

Ci(s) = 1.365(1 +
1

12.41s
).

Initially Am = 1.24, φm = 38.6 and ω̂g = 0.2805.
It should be noted that the both stability margins
are too small what turns the tuning critical. It
is desired to improved system robustness safely.
Therefore, the iterative tuning procedure will not
move too far the frequency points at each the
first iteration. The new specification are Ad = 2,
φd = 50 and ω̂d = ω̂g. The procedures takes
three iterations and it is used γ = 0.5 at the first
iteration and γ = 1 in the last two iterations. The
final controller is

Cre(s) = 0.37(1 +
1

1.95s
)

and the obtained margins are Am = 1.54 and
φm = 46.5. The results for the estimation based
procedure are shown in Fig. 9 and Fig.10.
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Fig. 9. Nyquist for the Estimation-Based Tuning
(Example 3)
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Fig. 10. Time Response for the Estimation-Based
Tuning (Example 3)

In this example was shown how the procedure can
be applied to safely approach the desired specifica-
tion. The final controller safely achieved a better
trade-off between desired stability specification
and time response.

7. CONCLUSIONS
In this paper a controller evaluation and redesign
technique was presented. The closed loop is evalu-
ated using relay experiments then an optimization

technique is applied to a frequency criterion. This
numerical problem is solved using two approaches:
identifying simple models using constrained op-
timization or frequency response estimation us-
ing relay information based experiments. It was
shown how the technique can safely approach
specifications. The procedures can be applied to
a large number of industrial processes. Simulation
examples illustrate its effectiveness.
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