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Abstract: In batch process, operating conditions change to meet the requirements of 
market and customers. For different combinations of operating conditions, data based 
modeling process has to be repeated for the development of a new prediction model, if 
common process characteristics are ignored. Obviously, this is inefficient and 
uneconomical. Effective using and extraction of certain common process behaviors and 
characteristics can allow fewer numbers of experiments for the development of new 
process model, resulting in savings of time, cost and efforts. With this as the key 
objective, a modeling method is proposed for batch process modeling in this paper.  
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1. INTRODUCTION

Batch processes, including injection molding, semi-
conductor processing, fermentation, pharmacy, food 
industry and most bioprocesses, become increasingly 
preferred choice in chemical industry, to produce 
high value-added products to meet the rapidly 
changing market. This circumstance leads to a boom 
of quality-related activities such as 6  campaign 
and transition in a production system. The production 
of better quality products is based on a reliable and 
prompt prediction of product quality. In general, 
product quality is measured offline and quality 
measurement is a costly, cumbersome, and time-
consuming practice. Therefore, it is important to 
develop a quality prediction method, allowing us to 
“measure” product quality in a fast, economical, 
efficient and accurate way.  

Quality prediction is often based on a model built 
between process conditions and quality variables. In 
other words, it is a kind of regression problems in 
nature, aiming to find a relationship between a set of 
X-variables (process conditions) and one or several 
response variables Y (quality properties). Generally, 
the quali ty predict ion models  can be buil t 

mechanistically and empirically. A mechanistic 
model, built on the first-principle or prior process 
knowledge, has a better extension than empirical 
model. It, however, is difficult to develop such a 
model, due to process high dimensionality, 
complexity and batch-to-batch variation, and also 
due to limited product-to-market time.  

In a batch process, operating conditions frequently 
change to meet requirements of market or customer. 
In other words, different specifications of product 
from the same family are produced by changing the 
recipe from first (or old) process to a second (or new) 
process. These processes might be of different sizes, 
process conditions and configurations, or with 
different equipments, though their intrinsic physical 
principles are the same. To rapidly and online predict 
the product quality, it is requisite to develop quality 
model which aims to find a relation between process 
conditions and response variable(s). Traditional data-
driven approaches, including artificial neural 
networks (ANNs), fuzzy logic model (FLM), partial 
least squares (PLS) and support vector machines 
(SVMs), require a large number of experimental data 
to build these models (Lee, et al., 2005; Li, et al., 
2004; Lu, et al., 2005). A practical problem is how to 
apply/modify the existing black-box model to new 
process where the process conditions have changed. 
For clarification, the existing model describing the 
old process is called a base model and model to be 
developed for new process is hereafter called new 
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model. Changes in process conditions and 
environment may make the existing base model 
invalid for quality prediction. A possible solution to 
this model problem is to re-conduct the experiments, 
re-measure samples and build a new model for the 
new process. To obtain the similar model prediction 
precision as the base model, a same large number of 
data are required for the development. Obviously, 
this is inefficient, time-consuming and uneconomical, 
and this is particularly problematic for batch 
processes with expensive material and/or a long 
cycle.

As we know, despite that operating conditions may 
be different for different batch processes, certain 
process behaviors and characteristics remain 
common under these conditions. For example, in 
injection molding, when materials are processed into 
different specifications of product, or with different 
molds, process conditions, such as barrel temperature, 
packing pressure, injection velocity have similar 
impacts on the molded part qualities. In more general 
cases, making products from the same family, these 
similar processes might be of different sizes and 
configurations; they are all based on the similar 
physical principles and follow a certain similar 
process behavior. These characteristics, to a degree, 
should have been built in the data-driven model, i.e., 
the base model already. Obviously, extraction and 
utilization of these common process behaviors and 
characteristics, and taking advantage of the existing 
base model, can allow fewer data to be required for 
developing new process model, as shown in Fig. 1. 

While there is a tremendous literature available for 
building model for batch process for quality 
prediction and optimization, to the best knowledge of 
the authors, there is little work published on the data-
based model migration for batch process with aim of 
reducing number of experimental data. There exist a 
few literatures on the subject of model 
migration/transfer, but requiring the knowledge of 
the first principle or process mechanism. For 
example, hybrid models, which combine prior 
knowledge or first-principle and traditional data-
driven methods, have been proposed for chemical 
process (Van Lith et al., 2003). Jaeckle et al. (2000) 
took advantage of information on existing 
mechanistic model of plant A to find the 
corresponding process conditions needed to 
manufacture the new product in plant B. The 
objective of that paper is to predict the process 
conditions for new plant rather than building new 
model. Multivariate calibration model is used for 
extracting chemical information from spectroscopic 
signals. The changes in spectral variations, due to 
different instrument characteristics or environmental 
factors, may render the original calibration model 
invalid for prediction in the new system. Feundale et 
al. (2002) reviewed various methods for transfer of 
calibration model to avoid time-consuming full-
recalibration by taking advantage of the existing 
model. Most of calibration models are linear and 
one-dimensional; such methods are not suitable for 
batch process modeling. 

Fig. 1. Development of new model. 

In this paper, we would like: 

(a) To arose the attention and interest of the 
community for this important modeling work of 
batch processes. 
(b) To state the problem and its challenges. 
(c) To give an exemplary solution to a simple 
problem case. 

The development requirements of new model based 
on a base model is that: 

1. Use fewer training data to build new model than 
that required to build base model if two models with 
similar prediction ability, or 
2. Build new model with higher prediction ability 
than that of the base model, if using equal or nearly 
equal number of training data.  

With such a problem, we define it as “Batch Process 
Modeling Based on Process Similarity”, or BPMBPS. 
This work can be divided into the following a few 
steps: (a) information extraction from the base model, 
(b) design of experiment, (c) assessment of the 
similarities or differences between the new process 
and the old process, (d) model migration and 
verification of new model, as shown in Fig. 2. 

The remainder of the paper is so organized. Section 2 
presents the key requirements and challenges for 
each major step in the BPMBPS. Section 3 outlines 
several possible cases of differences between the new 
process and old process. Section 4, presents an 
exemplary solution to a simple difference case where 
input and output slope/bias correction could be used 
for the model migration. Section 5 gives an 
illustrative example application. Finally, some 
conclusions and remarks are given in Section 6. 

2. REQUIREMENTS AND MAJOR 
CHALLENGES

The key requirements and challenges for “Batch 
Process Modeling Based on Process Similarity” can 
be summarized as follows:  

2.1 Information extraction from base model. 

Despite it has been developed with input-output data 
alone, base model, as pointed in the introduction, 
should contain a certain key process characteristic. 
Information could be extracted to assist the 
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understanding of old process and to guide the design 
of experiment for the new process. For example, with 
the base model, we could find which process 
condition (or factor) has significant influence on 
response variable; whether the influence on response 
is linear or nonlinear or not, if nonlinear, what kind 
of nonlinearity and monotonicity it is. The 
information such as these will be helpful for plan the 
experiments on the new process. 

2.2 Design of experiment. 

Traditionally, training data for modeling are 
collected through statistical design of experiment 
(DOE). Generally, without process information, an 
experimental program begins with a screening design 
only considering two levels for each factor, followed 
by an augmented experiment to develop a more 
accurate model (Montgomery, 2001). Conventional 
DOE approaches require the training data to be 
evenly distributed in input space, which apply 
equivalent weight on each data. With the availability 
of a base model, even spacing of input space is often 
on longer necessary and economical. Therefore, the 
key challenge of this step is how to develop and 
identify a guided new DOE method from the base 
model. 

2.3 Assessment of difference. 

With collection of data from the new process, 
analysis of experimental results can be conducted to 
first verify whether the base model is still valid for 
new process. If not, the analysis should be continued 
to find if the new experiments have captured key 
features of new process. The analysis should focus 
on where and how difference exists. With difference 

Fig. 2. Flow chart for developing new model based 
on process similarity. 

assessed, different migration strategies should be 
applied. A good experimentation should be on a 
sequential or hierarchical basis, so continually 
learning in an iterative process should take place to 
avoid conducting a single unnecessarily large number 
of experiments at the beginning. Therefore, DOE 
step is repeated if necessary, as shown in Fig. 2. 

2.4 Model migration and verification.

Different model updating and/or migration 
algorithms should be developed for the migration of 
the model to new process. This procedure should 
retain characteristics common to the old process, 
remove information relation that are no longer valid 
for new process and add, modify or update the new 
information evolved in new process. During this 
procedure, criteria should be developed to evaluate 
the migration performance of new model. This 
procedure can be repeated until the requirements are 
satisfied. 

3. POSSIBLE CASES OF DIFFERENCE 

In reality, there exist many causes that render the 
original model invalid. There are many different 
ways of assessing the difference between the original 
model and the new process. In this first attempt, we 
divide the difference in terms of difference 
complexity. 

3.1 Simple difference - Shift and scale difference.

The simplest process difference is new process is just 
a shift and scale of the old process. The shift and 
scale difference occurs not only in output(s), but also 
in input(s). The traditional scale up analysis in the 
dimensionless group may be helpful to this class of 
problem, but it has been limited mostly to first 
principle model. This paper presents a possible 
solution to this class of problems. 

3.2 Difference is less complex than the process itself.

Due to the changes in process dynamic behavior, 
new process can not be simply described by shift and 
scale of old process. However, process difference 
exhibits a relatively simple trend, and this can be 
corrected by a correction model. 

3.3 The complex difference.

In certain cases, complexity of difference between 
two processes is more complex than the process itself. 
This is a true challenge case. In this case, it maybe 
possible that it is easier to build a new model rather 
than focus on model migration. The focus of this 
paper is on process with a certain similarity. So this 
case is not within the focus of the research. 

4. EXEMPLARY SOLUTION TO A SIMPLE 
CASE
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With the simplest case, new process is the shift and 
scale of old process, a systemic procedure is 
developed to demonstrate the concept of model 
migration to reduce experiments. The procedure 
begins with the given base model, followed by DOE 
guided by the information extracted from the base 
model. With collection of new data, experimental 
data analysis is conducted to determine the type of 
difference, and a slope/bias correction on base model 
is conducted to develop the new model. Since the 
given example is a simple difference case, not all 
steps involved in the Fig. 2 are necessary. 

4.1 Process information extraction.

Base model is a good representative of old process 
and it consists of a lot of process information. This 
information can be used to guide DOE design on 
new process. In a particular process, different factors 
(inputs) have different impacts on response variable 
(output). To determine how much does the response 
variable change when each factor is changed, the 
main effect of each factor is introduced. The main 
effect of a factor is defined as the change in response 
produced by a change in the level of the factor. We 
use the generic notation  to denote the observation 
for the experimental run. For example, to measure 
the average effect of a factor, say A, computer the 
difference between the average value of all 
observations in the experiment at the high (+) level 
of A and the average  value of all observations in 
the experiment at the low (-) level of A. This 
difference is called the main effect of A, as shown in 
equation (1). Generally, A+ and A- are used to 
represent the high and low levels of A, respectively, 
(Wu, 2000). 

iy
thi

iy

iy

( ) ( ) ( )ME A y A y A  (1) 

4.2 Design of experiment (DOE).

To efficiently determine the new process’ behavior 
with sparse influential and critical data points, the 
cluster estimation method, developed by Chiu (1994), 
is used. The procedure begins with discretization of 
input (x)-output (y) space ( ) into N points 
on base model. Each data point is considered as a 
potential cluster center and a measure of the potential 
of data point  is defined as: 
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where represents the potential of the data point, 
N denotes the number of data points and r  is 
effective radius, defining a neighborhood. Thus, the 
measure of potential for a data point is a function of 
its distances to all other data points. The closer a data 
point is to a candidate cluster center, the more it 
contributes to the potential of it. The traditional 
subtractive clustering uses a uniform radius for each 
dimension of input-output space. As we known, each 
input variable has different impact on output. In 
order to better describe the key features of process, a 

non-uniform effective radius based for measure of 
the potential of data point  is revised: 
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where k denotes the dimension of input-output space 
and m denotes the input space. Selection of effective 
radii is based on the input impact on output, larger 
the impact, smaller the radius. Thus, effective space 
of each center is changed from hyper-sphere to 
hyper-ellipsoid. Estimation of input impact can be 
done by calculating the main effect of each input 
variable (Wu, 2000). 
By properly setting the effective radius of each 
dimension, the number and locations of cluster 
centers are found. Detailed literature survey about 
how to find the cluster centers can be found in Chiu 
(1994). Each cluster center is in essence a 
prototypical data point that exemplifies a 
characteristic behavior of the old process. Naturally, 
new experiments are conducted at each cluster center 
and describe the behavior of new process. 

4.3 Slope/Bias correction.

In a simple case, new process is a shift and scale of 
the old process. Thus, new model can be obtained 
through a slope/bias correction of base model. This 
correction involves input and output correction. 
Given the base model of any form: 

(base baseY f X  (4) 
where baseX  and  are the inputs and outputs of 
base model, respectively, and 

baseY
f is any nonlinear 

function to describe the old process. If there only 
exists a shift and scale in input space, inputs of new 
process newX  should be transformed into those of old 
process baseX by a slope and bias correction, as 
shown in equation (5): 

base I new IX S X B  (5) 
where IS and IB denote scale and shift of old process 
in input space, respectively. Thus, new model is 
changed into: 

(new I new IY f S X B )  (6) 

More generally, shift and scale occur in not only 
input space but also output, thus, new model is 
changed into equation (7), as shown in the Fig. 3: 

(new O I new I OY S f S X B B)  (7) 
where  and  represent scale and shift of old 
process in output space, respectively. Estimation of 
above parameters can be obtained by optimizing the 
following equations together with the training data 
from new process,  
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where,  is  training data on new process and iy thi
denotes the predicted error between the true value 
and predicted value from base model. We should 
note that all identified shift and scale parameters are 
vectors determined by the dimension of input and 
output space. 

5. APPLICATION 

The performance of the proposed methodology was 
evaluated on injection molding with different molds. 
Injection molding, an important polymer processing 
technique, makes different shapes and types of 
products with different polymer materials and molds. 
The quality of product is the results of different 
combination of material property, mold and part 
geometry and processing conditions. This quality can 
be roughly divided into dimensional property, 
surface property and mechanical or optical property. 
For simplicity, dimensional property, such as width 
of injection-molded part is selected as the product 
quality in this project. 

Fig. 3. Slope and bias correction. 

Fig. 4. Mold I with flat cavity. 

Fig. 5. Mold II with fan gate. 

In order to illustrate the proposed method, the 
experiments were performed on an 88 tons Chen 
Hsong reciprocating-screw injection molding 
machine, model number JM88MKIII, with two 
different molds. Process with mold I and II are 
considered as the old process and new process, 
respectively. The two mold geometries are shown in 
Fig. 4 and Fig. 5. In order to focus on the mold
influence on product quality, the same material, high-
density polyethylene (HDPE) is used in these two 
processes. In the analysis, three process variables, 
including packing pressure, injection velocity and 
barrel temperature are chosen to describe part quality, 
as they have relative significant effect on part 
dimension. To build the base model, a full factorial 
design with 27 experimental runs is conducted, each 
factor with three levels, as shown in Table 1. An 
analysis of variance, ANOVA, is made on 
experimental data and a polynomial regression model 
is built as the base model with the mean squared 
errors (MSE) 3.51%.  

Table 1 Factors and levels for full factorial design

LevelFactor

1 2 3

Packing pressure (bar) 150 300 450 

Injection velocity (mm/s) 8 24 32

Barrel temperature (oC) 180 200 220 

With the base model, following our proposed 
procedure of in Fig. 2, a design of experiment (DOE) 
is conducted for new process (i.e., mold II). 
Calculation of main effect of each factor shows that 
packing pressure has significant impact on the part 
quality, and injection velocity and barrel temperature 
have relatively less significant but similar impact on 
the part quality. Therefore, the three effective radii 
for clustering estimation are selected as following 
equation shown: 

1 2 3[ , , ] [0.5, 0.9, 0.8]r r r  (9) 
Then, 1000 (10×10×10) generated data points from 
the base model are clustered to stand for experiment 
condition for the new process. Clustering results 
indicate that eight experiments should be conducted 
on the new process. These new experiments can not 
be directly conducted on new process before initial 
transformation of inputs, as each process variable has 
different operating ranges due to change of mold. We 
should note that, this kind of input transformation is 
different to slope/bias correction of inputs. An output 
slope/bias correction is conducted by using first four 
new experimental data. The verification of new 
model shows that the MSE of corrected model is 
equal to 3.84%, larger than that of base model. To 
further improve performance of new model, an input 
slope/bias correction is included based on previous 
corrected model by using eight new experimental 
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data.  The verification result of new model shows a 
lower MSE 2.98%, comparable to that of base model. 
Table 2 shows prediction results with and without 
correction. The second column, shows significant 
prediction error with the results predicted from the 
model without migration, i.e. the original model. The 
other three columns show that prediction results from 
the corrected model are quite close to the actual 
value.

Lu, N.Y and F. Gao (2005). Stage-Based Process 
Analysis and Quality Prediction for Batch 
Processes. Industrial & engineering chemistry 
research, 44, 3547. 

Montgomery D.C. (2001). Design and Analysis of 
Experiments. 5th edition, Wiley, New York, 
U.S.A. 

Van Lith, P., F., Betlem, B., H.L., and Roffel, B 
(2003). Combining prior knowledge with data 
driven modeling of a batch distillation column 
including start-up. Computers and chemical 
engineering, 27, 1021. Table 2 Slope and bias correction results

Wu C.F. (2000). Experiments Planning, Analysis, 
and Parameter Design Optimization. Wiley, 
New York, U.S.A. 

No. Base
model 

Correction
in output 

Correction
in input 
and output 

Actual
value

1 116.95 97.62 97.60 97.57 
2 117.11 97.79 97.79 97.68 
3 116.84 97.53 97.47 97.42 
4 117.15 97.90 97.85 98.02 
5 116.48 97.02 97.04 97.06 
6 117.16 97.89 97.85 97.86 
7 117.52 98.33 98.29 98.27 
8 116.75 97.43 97.38 97.32 

6. CONCLUSIONS 

Developing an accurate process model for complex 
batch process is generally a difficult and expensive 
task. In this paper, we outline a model migration 
method by taking advantage of a base model 
developed for an old process, using limited number 
of experiments. A systematic approach, including 
information extraction from a base model, design of 
experiment, analysis of difference, and model 
migration has been proposed. A solution to simple 
case has been developed, and the application to 
injection molding shows that the proposed method is 
effective. 
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