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Abstract: In this work dynamic optimal start-up policies were computed and
validate in an experimental lab scale continuous bioreactor. Using the theoretical
optimal profile a reduction in the start-up time was achieved when compared
to simple step-like changes in the manipulated variables. Therefore, the use
of optimal start-up policies led to raw material savings. To test the optimal
start-up policies two operating points were selected. Experiments were run
at these conditions to fit kinetic rate constants leading to a reliable model
representation of the addressed biosystem. Our aim was to demonstrate that
dynamic optimization is a valuable tool when approaching the dynamic operation
of bioreactors assuming that a good model representation of the system is available.
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1. INTRODUCTION

Dynamic optimization has been proposed for im-
proving the dynamic operation of processing sys-
tem (Kameswaran and Biegler, 2006). In fact,
this approach has been widely used for computing
optimal start-up and switching control policies.
For medium to large scale systems, two optimal
control methodologies seem to dominate the nu-
merical solution of optimal control problems. On
one hand, the resulting set of differential and al-
gebraic equations (DAE) comprising the dynamic
mathematical model of the addressed system is
subject to partial discretization of the output
variables and the remaining differential system is
numerically integrated (Allgor and Barton, 1999).

1 Author to whom correspondence should be addressed. E-
mail: antonio.flores@uia.mx, phone/fax: +52(55)59504074,
http://200.13.98.241/∼antonio

This approach is commonly called the sequential
optimal control approach. On the other hand, in
the simultaneous approach both the set of ma-
nipulated and controlled variables are fully dis-
cretized leading to a set of algebraic equations.
Therefore, the optimal control problem is trans-
formed into a nonlinear program (Kameswaran
and Biegler, 2006). Although it has been claimed
that the sequential approach is easy to use it
has some disadvantages. Presently, it seems to
be unable to handle open-loop unstable systems
without previous stabilization. Quite the con-
trary, it has been shown that the simultaneous
approach is able to efficiently handle unstable
systems (A. Flores-Tlacuahuac, 2005). However,
the simultaneous approach demand good initial-
ization strategies and normally state of the art
nonlinear solvers able to handle the large systems
arising from system discretization. With the ever
increasing advances in computing power and the
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availability of large scale nonlinear optimization
solvers, it seems that the simultaneous approach
will be widely used for approaching large scale and
highly nonlinear optimal control problems.

One of the aims of dynamic optimization tech-
niques lies in computing optimal start-up con-
trol policies of processing equipment. Frequently,
heuristic based methodologies are used for such
purpose. However, they normally tend to demand
long start-up times leading to large amounts of off-
specification material and excessive energy con-
sumption. Dynamic optimal start-up policies can
contribute to remove start-up problems leading to
a profitable system featuring improved operability
characteristics.

In this work we formulate the start-up problem
of a continuous stirred bioreactor as an open-
loop optimal control problem aiming to compute
optimal start-up policies featuring minimum tran-
sition time. The optimal theoretical start-up poli-
cies were experimentally implemented in a lab
scale bioreactor. Good agreement was observed
between the predicted and measured biomass con-
centration.

2. MATERIALS AND METHODS

A recombinant strain of Saccharomyces cerevisiae
W303 (pRS6:: ΔNSITPS1/PSAL4:: ScTPS2) main-
tained on defined medium without uracil (Pedraza-
Segura, 2005), was grown at D=0.096 h−1 under
carbon source limitation at 30oC in a stirred tank
bioreactor (BioFlo III, New Brunswick Scientific,
N.J., USA) with a working volume of 2.5 L. The
airflow was kept at 0.4 vvm and the stirred speed
varied in order to maintain the dissolved oxygen
concentration at 20%. The concentrations of the
components in the synthetic mineral medium were
calculated from elementary balancing. Cultivation
was initiated with a batch operation; continu-
ous operation was started at different times and
feed concentration. Biomass concentration were
determined by turbidimetry at 560 nm. Sucrose
was analyzed by HPLC, using an Aminex column
HPX-87H (BioRad, USA) with 0.05 N H2SO4 like
eluant, at 30oC with RI detector. We would like to
remark that our recombinant yeast features some
advantages in comparison with wield yeasts such
as larger biomass concentration and greater stress
tolerance.

3. MATHEMATICAL MODEL

The mathematical model of the bioreactor is given
as follows:

dx

dt
=−Dx +

μmaxs

(ks + s)
x (1)

ds

dt
= D(sf − s) − μmaxs

Yx|s(ks + s)
x (2)

where x [gr cell/l] stands for the biomass concen-
tration, s [gr substrate/l] is the substrate com-
position, D [h−1] is the dilution rate, sf [gr sub-
strate/l] is the substrate concentration in the feed
stream. μmax [h−1], ks [gr substrate/l] and Yx|s [gr
cell/gr substrate] are kinetic constants. It should
noticed that the above model is a perfectly mixed
continuous bioreactor model. We have assumed
that, to optimally starting-up the reactor, from
certain initial conditions (to be optimized as well),
we manipulate the feed stream substrate concen-
tration (sf ) and control the absorbance (A) of the
product mixture. The absorbance is an indirect
measure of biomass composition since A = x/1.1
.

4. PARAMETER FITTING

To improve model predictions two sets of exper-
imental runs were done. The parameters fitted
were μmax, ks and Yx|s. The first set of experi-
mental runs were done far away from the expected
operating conditions to test model prediction ca-
pabilities. Using the experimental information a
standard nonlinear parameter procedure was used
to get the kinetic value constants that best fit the
experimental data. Figure 1 displays the compar-
ison between experimental vs fitted model behav-
ior for the two sets of experimental information.
Overall, as shown, the fitted model predictions
are satisfactory. For the first set of experimental
measurements, Fig. 1(a), the fitted parameter val-
ues are μmax = 0.457463, ks = 0.291433, Yx|s =
1.14612, while for the second set of experimen-
tal measurements, Fig. 1(b), the fitted parameter
values are μmax = 0.39461, ks = 0.0924537, Yx|s =
0.894432. Even when no optimal global solutions
were searched, the nonlinear parameter problem
was solved from different guessed parameter val-
ues to ensure the best possible optimal solution.
It should be noticed that fitted Yx|s values are
beyond reported values. However, large Yx|s val-
ues could be explained noticing that most of the
ethanol is quickly consumed.

5. OPTIMAL START-UP FORMULATION

As described in (Flores-Tlacuahuac et al., 2005),
Simultaneous Dynamic Optimization (SDO) pro-
vides a way to compute optimal dynamic poli-
cies, even in the presence of challenging nonlin-
ear behavior. These include transitions to un-
stable points, optimization with chaotic systems
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Fig. 1. Comparison between measured and fitted model absorbance response for each on of the two
experimental systems.

(Schloeder-H and Bock Kallratch, 1993) and sys-
tems with limit cycles and bifurcations. In SDO,
computation of optimal transitions policies re-
duces to the solution of an NLP (Biegler et
al., 2002) and provides values of the decision vari-
ables (i.e. the manipulated variables) that drive
the system toward minimum transition time or
off-spec product.

A common requirement during the start-up of
bioreactors is that start-up feature minimum tran-
sition time, waste material or utility consumption.
The minimum start-up time policy requires set-
ting the following optimization problem (where
we have assumed that the manipulated variable
is feed stream substrate concentration sf and the
tracking variable is the Absorbance A):

min
z1,zo

∫ tf

0

{‖A(t) − Â‖2 + ‖sf (t) − ŝf‖2}dt (3)

s.t. Semi-explicit DAE model:

dz(t)
dt

= F (z(t),y(t),u(t), t,p) (4)

0 = G (z(t),y(t),u(t), t,p) (5)

Initial conditions:

z(0) = z0 (6)

Bounds:

zL ≤ z(t) ≤ zU

yL ≤ y(t) ≤ yU

uL ≤ u(t) ≤ uU

zo,L ≤ zo ≤ zo,U

pL ≤ p ≤ pU

(7)

where F is the vector of right hand sides of differ-
ential equations in the DAE model, G is the vector
of algebraic equations, assumed to be index one,
z is the differential state vector, z0 are the initial
values of z, ẑ is the new desired transition state, y
is the algebraic state vector, u = sf is the control
profile vector, û = ŝf is the reference control
vector, p is a time-independent parameter vector,

and tf is the transition horizon. Notice that ŝf

represents the value of the decision variable at the
end of the desired start-up period. Such values are
normally available from steady-state calculations
since, in order to compute a start-up transition,
we need to know the values of the controlled
and manipulated variables at the initial and final
operating points. In the above formulation, z1

stands for a vector which contains those states
that are part of the objective function, while ẑ1

means the desired final values of the same states.
In our case z1 = 1.1x. So, z1 stands for the
value of the states that we desire to track. The
objective function represents the deviation of the
states and the inputs from the desired product. It
should be noticed that the initial concentration of
both biomass and substrate, zo, were also decision
variables since we found that minimum time opti-
mal start-up policies were highly sensitive to the
initial concentrations of the reactants. The upper
bound on the initial conditions, zo,U , reflected the
maximum physically allowed initial biomass and
substrate concentrations, while the lower value,
zo,L, was always set to zero.

In the SDO approach, the DAE optimization
problem is converted into an NLP by approxi-
mating both the state and control profiles by a
family of polynomials on finite elements. Here a
Runge-Kutta discretization with Radau colloca-
tion points is used, as it allows constraints to
be set easily at the end of each element, and
to stabilize the system more efficiently if high
index DAEs are present. In addition, the integral
objective function is approximated with Radau
quadrature with Nfe finite elements and Ncol

quadrature points in each element. As shown in
(Flores-Tlacuahuac et al., 2005), substitution of
this discretization into (3)-(7) applied at the col-
location points leads to the following NLP.
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min
x∈Rn

f(x) (8)

s.t. c(x) = 0 (9)

xL ≤ x ≤ xU (10)

where x represents coefficients of the piecewise
polynomials that make up the control and state
profiles. More details of this approach can be
found in (Flores-Tlacuahuac et al., 2005). The
dynamic optimization formulation given by (8)-
(10) was implemented using the AMPL mathe-
matical programming language and solved using
the IPOPT algorithm (Wachter and L.T., 2004)
for large-scale nonlinear programming.

6. NUMERICAL RESULTS

The dynamic optimization problem represented
by Eqs 3-7 was solved for the two identified models
described earlier. Minimum time optimal start-
up policies were sought. Even when the start-up
time was not directly a decision variable, we used
an iterative approach (see Fig. 2) to determine
minimum start-up times. We have found that this
approach works well and avoids potential non-
convexities introduced when the start-up time is
taken as a decision variable. Moreover, we have
used, in other type of dynamic systems, the time
as decision variable and found that, after a small
number of iterations, the results from the iterative
and direct approaches are similar.

Table 1 shows the computed results for each case.
As shown, in all cases the desired biomass con-
centration x̂ was 10, while the final value of the
manipulated variable ŝf is different because they
represent two different operating scenarios. The
decision variables were bounded as follows: x ≥
0, s ≥ 0, 0 ≤ sf ≤ 20, 0 ≤ so ≤ so,U , 0 ≤ xo ≤ 1,
where so,U , the upper limit on the initial substrate
concentration, was set to 20 and 10 for the first
and second cases, respectively. As noticed from
Table 1, in both cases only 10 finite elements Nfe

and three collocation points Ncol were required
to represent system dynamics. In both cases, the
number of decision variables and equality con-
straints was 172 and 160, respectively. As noticed
from Table 1, the CPU time was quite low since,
by today standards, this a small scale problem.
Finally, it should be stressed that the dilution rate
D was not used as a manipulated variable due to
difficulties for handling small dilution rate values
in our experimental facilities. Instead, the dilution
rate was always set to 0.096 h−1.

The dynamic optimal theoretical results are dis-
played in Figs. 3 and 4. The continuous lines
represent the predicted dynamic optimal control
profiles that should be used to drive the output
system response (biomass concentration x) to the

Table 1. Information regarding the fi-
nal desired steady-state operating con-
ditions (x̂, ŝf ) for each operating sce-
nario. xo and so stand for the optimal
initial biomass and substrate concentra-

tion, respectively.

Case 1 Case 2

x̂ [gr cell/l] 10 10
ŝf [gr subsrate/l] 8.8 11.2
xo [gr cell/l] 1 1
so [gr substrate/l] 17.806 10
Nfe 10 10
Ncol 3 3
CPU Time [s] 0.141 0.093

desired steady-state. Because the optimal control
policies will be manually implemented in a lab
scale bioreactor, all the optimal control policies
were enforced to take step-like behavior.

7. EXPERIMENTAL RESULTS

As displayed in Fig. 3, the experimental results,
obtained by applying the optimal control profile,
closely track the theoretical profile. Initially, the
yeast consumes the initial amount of substrate
since no substrate is fed during the first 7 op-
erating hours. When most of the substrate has
been consumed, the optimal solution decides to
to feed substrate for the first time. Initially, a
small substrate shot is used to drive the system
close to the desired steady-state. Finally, a larger
substrate increase is used near the end of the
operating period. We would like to stress that us-
ing the optimal operation profiles enough oxygen
concentration was always maintained as displayed
in Figure 5(a).

Fig. 4 displays the results of using the dynamic
optimal control profiles for the second example. In
this case, the feed stream substrate concentration
hit the upper limit because, as shown in Table 1,
the initial amount of substrate seems to be small.
High feed stream concentration is kept for the
first 5 operating hours. After enough substrate
has been accumulated within the system, the
optimizer decides to stop feeding substrate. From
this point on, the system behaves as a semi-batch
reactor. Finally, the optimizer uses large control
actions for reaching the desired steady-state. The
tracking of the theoretical signal was not as good
as for the past example because it takes more
control action to drive the system to the desired
steady-state. Similarly, as shown in Figure 5(b),
good oxygen concentration characteristics were
maintained.

In continuous operation good aeration and yeast
characteristics lead to acceptable oxygen con-
centration as displayed in Figure 5. Maintain-
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Fig. 3. Results for the first operating point. (a) Optimal profile of the manipulated variable (Sf ), (b)
Comparison between predicted and lab scale bioreactor responses.
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Fig. 4. Results for the second operating point. (a) Optimal profile of the manipulated variable (Sf ), (b)
Comparison between predicted and lab scale bioreactor responses.
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Fig. 5. Measured oxygen concentration during start-up of the bioreactor. (a) First and (b) Second
experiments.

ing high oxygen concentration levels (beyond the
oxygen critical concentration) promotes better
biomass growth. In comparison, we have observed
that in pure batch operation, oxygen is quickly
exhausted. Therefore, during batch operation,
changes in the metabolic network could occur
leading to undesired products.

8. CONCLUSIONS

In this work we have addressed the practical im-
plementation of dynamic optimal control policies
for the start-up of a continuous stirred bioreactor.
Optimal control policies were open-loop imple-
mented, although closed-loop implementation are
highly desirable for industrial scale bioreactors.
We have used a new kind of recombinant strain
capable of greater alcohol production and that
keeps good oxygenation characteristics.

When addressing optimal control calculations, the
same values of the fitted parameters were main-
tained along the whole start-up procedure. There
is a good chance that both the structure of the
model and the parameters embedded change with
respect to the operating conditions. Using differ-
ent models and parameter values for approaching
system behavior at different operating regions is
hardly a new idea, but it has been reported as
a critical point in some bioengineering systems.
To address optimal control calculation for systems
featuring different model structures and parame-
ter values a hybrid optimal control problem ought
to be solved (Doyle et al., 2003). This is a rel-
atively new research area, mostly for nonlinear
systems since some work has been reported for
linear ones (Bemporad and Morari, 1999).

Due to the small scale dimension of the mathe-
matical, real time control seems to be a feasible
option for the start-up and dynamic operation of
bioreactors. We will address these points in future
work.
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