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Abstract: Optimal steady-state temperature profiles for jacketed tubular reactors
often exhibit a trapezoidal shape along the reactor, i.e., first an increase, then a
constant part and finally a decrease (Smets et al., 2002; Logist et al., 2006b). The
practical realisation of these reactor temperature profiles is complex given the
(infinite dimensional) spatially varying jacket fluid temperature profile required
for the constant reactor temperature part. Therefore, based on simulations
this paper compares two practically feasible alternatives with a near-optimal
performance. The first splits the jacket into a finite number of isothermal zones.
The second considers a flow reversal strategy, which also induces trapezoidally
shaped temperature profiles (Logist et al., 2006a). Copyright c© 2007 IFAC.
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1. INTRODUCTION

For classic jacketed tubular reactors optimal tem-
perature profiles often exhibit a trapezoidal shape,
i.e., increasing until a certain reactor temperature
is reached, keeping that temperature constant
over an interval, and decreasing the temperature
towards the end (Smets et al., 2002; Logist et
al., 2006b). However, inducing the constant tem-
perature part via the jacket is difficult for an
exothermic reaction, because a spatially varying
jacket fluid temperature profile is required.

The flow reversal or reverse flow reactor is an al-
ternative configuration which integrates reaction
and heat exchange. Periodically reversing the flow
causes the fixed bed inside the reactor to act as
a regenerative heat exchanger, typically yielding
trapezoidal temperature profiles. (For an overview
see the review by Kolios et al. (2000).) A quan-

titative comparison between the classic and the
reverse flow reactor has been reported for the adi-
abatic case (Gawdzik and Rakowski, 1988). How-
ever, a surrounding cooling jacket is required when
certain temperature limits must not be exceeded
or when the constant temperature level has to be
controlled (Khinast et al., 1998). A comparison
for this nonadiabatic case is still lacking.

Therefore, this paper focusses on the performance
optimisation and comparison of two practically
feasible jacketed reactor configurations, which
lead to (near-)optimal temperature profiles. First,
a classic tubular reactor with a finite number
of isothermal jacket zones is selected. As second
option a cooled reverse flow reactor is studied. The
organisation is as follows. Section 2 introduces
the reactor configurations. Section 3 describes the
numerical procedures, while Section 4 discusses
the results. Section 5 summarises the conclusions.
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2. JACKETED TUBULAR REACTORS

This study concentrates on reactors in which
an exothermic reaction takes place and where
the produced heat is removed via a surrounding
jacket. The studied classic and reverse flow con-
figurations both involve a simple 1D model and
an irreversible first-order reaction with Arrhenius
kinetics enabling a fair comparison between the
(cyclic) steady-state performance. Additionally,
the start-up procedure is checked to ensure a safe
convergence to the desired (cyclic) steady-state.

2.1 Classic tubular reactor configuration

Assuming plug flow reactor (PFR) behaviour un-
der transient conditions results in the following set
of coupled nonlinear first-order hyperbolic PDEs
with as independent variables the time t [s] and
the spatial coordinate z [m]:
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∂t
=−v
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∂z
− k0Ce

−E
RT

∂T

∂t
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4h

ρfcpfd
(Tw − T )

with C(0, t) = Cin and T (0, t) = Tin. C [kmole/
m3] and T [K] indicate the reactant concentration
and the temperature, v [m/s] the fluid velocity,
ΔH [J/kmole] the heat of reaction (ΔH < 0
for an exothermic reaction) and ρf [kg/m3], cpf

[J/kg/K], k0 [1/s], E [J/mole], R [J/mole/K], h
[W/m2/K], Tw [K] and d [m], the fluid density, the
specific heat, the kinetic constant, the activation
energy, the ideal gas constant, the heat transfer
coefficient, the jacket fluid temperature and the
reactor diameter, respectively. The steady-state
balances are readily obtained by equating all
derivatives with respect to time to zero.

In previous work by Smets et al. (2002) and Lo-
gist et al. (2006b) optimal infinite dimensional
steady-state jacket fluid profiles Tw(z) have been
derived analytically (based on optimal control the-
ory) for cases with and without an explicit up-
per reactor temperature limit. Two cost criteria
(Equations (1) and (2)) have been considered,
which both consist of a trade-off between a con-
version and an energy cost part, reflecting the
current trend in process industry towards process
integration and intensification:

JTC = (1 − A) C(L)︸ ︷︷ ︸
J1

+A
(T (L) − Tref,1)2

K1︸ ︷︷ ︸
J2

(1)
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J3

(2)

where A [-] is a trade-off coefficient ranging
from zero to one, and K1 [K2m3/kmole] and K2

[K2m3/kmole] are scaling factors. The conversion
cost J1 measures the reactant concentration at the
reactor outlet (z=L). The terminal energy cost
J2 penalises the deviation of the exit temperature
T (L) from a reference temperature Tref,1 [K] in
order to limit the terminal energy loss to a cer-
tain off-set value by controlling the heat recov-
ery through the jacket. The integral type cost J3

penalises temperature deviations from a reference
temperature Tref,2 along the reactor, in order to
minimise the chance of hot spots. More informa-
tion on the interpretation of both cost criteria
can be found in Logist et al. (2006a). To avoid
hazardous situations an upper temperature limit
T (z) ≤ Tul is often required. The resulting opti-
mal reactor temperature profiles exhibit a trape-
zoidal shape, requiring for the constant reactor
temperature part a spatially varying temperature
inside the jacket. For a practical realisation, the
jacket will be split into a finite number of isother-
mal parts, whose temperature level has to be op-
timised to achieve a (near-)optimal performance.

2.2 Reverse flow configuration

The classic example of Eigenberger and Nieken
(1988) deals with an insulated (adiabatic) reverse
flow reactor (RFR). The addition of a cooling
jacket (Khinast et al., 1998) results in the follow-
ing set of coupled nonlinear parabolic PDEs for
the mass and energy balances:
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∂t
= D
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+
ε

ρcp

kCe−E/RT (−ΔH) +
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with additionally D [m2/s] the dispersion coeffi-
cient, ρcp [kJ/m3/K] the fixed bed heat capacity,
λeff [kW/m/K] the effective heat conductivity
and ε [-] the void fraction.

The introduction of the fixed bed induces disper-
sion of mass and heat reflected by the axial dis-
persion coefficient and effective heat conductivity.
As the jacket mainly covers the middle part of the
reactor, while the inlet and outlet zones are still
insulated, the value of the heat transfer coefficient
h is constant and positive in the jacketed zone, i.e.,
[L/2 − Lj/2, L/2 + Lj/2] with Lj [m] the jacket
length, and zero in the insulated zones. The tem-
perature of the fluid inside the jacket is assumed
to be constant along the jacket. For the classic
example of Eigenberger and Nieken (1988) this
approach has been successfully applied in previous
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work (Logist et al., 2006a) to achieve a trape-
zoidal (cyclic) steady-state reactor temperature
with a controllable constant temperature part.
The reverse flow performance will be optimised
according to the time-averaged cost criteria J ′

TC

and J ′
TIC equivalent to Equations (1) and (2):

J ′
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∫ 2τ

0
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+

A
1

K1

(∫ 2τ

0
(Tout(t) − Tref,1)dt

2τ

)2

︸ ︷︷ ︸
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0
(T (z, t) − Tref,2)2dz dt
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3
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Most cost parameters are user-defined and, hence,
have to be adapted for a specific process. In this
simulation study, A is taken equal to 0.5, K1

and K2 to 250000 K2m3/kmole, and Tref,1 and
Tref,2 to 350 K and 360 K, respectively. The upper
reactor temperature limit Tul is assumed at 400 K.

In summary, this cooled reverse flow reactor and
the classic jacketed tubular reactor with a finite
number of isothermal jacket parts are compared as
practically feasible alternatives for implementing
(near-)optimal trapezoidal temperature profiles.

3. NUMERICAL SIMULATION AND
OPTIMISATION TECHNIQUES

3.1 Classic tubular reactor configuration

Since the classic steady-state plug flow reactor
model for the jacketed tubular reactor consists
of ODEs with initial conditions, the steady-state
can easily be computed via a standard integrator.
For the transient simulations of the reactor dur-
ing start-up, requiring the solution of hyperbolic
PDEs, an operator splitting algorithm (Renou et
al., 2003) is adopted due to its excellent behaviour
in the presence of steep gradients.

The steady-state optimisation problem has a finite
number of degrees of freedom (i.e., the tempera-
tures for each of the isothermal jackets) and is
subject to ODE constraints. Such problems can
be solved numerically using direct dynamic opti-
misation techniques, which typically require the
solution of a nonlinear programming (NLP) prob-
lem. Here, a sequential approach is adopted, using
standard integrators to calculate the objective
function at each iteration step of the optimisa-
tion routine. A stochastic NLP solver (Integrated

Controlled Random Search (Banga et al., 1998))
is first applied to localise the vicinity of the global
minimum, while a deterministic gradient based
SQP solver (E04UCF from NAG Fortran library)
ensures in a second phase a fast convergence to
this global optimum.

3.2 Reverse flow configuration

Due to the periodic flow reversals, the low inlet
temperature and the fixed bed, acting as a re-
generative heat exchanger, a slowly moving tem-
perature front is induced. The aim is to achieve
an operation regime in which the successive re-
version cycles become repeatable, i.e., the cyclic
steady-state (CSS). Direct dynamic simulation
(DDS) refers to the computation of the CSS by
calculating the full transient from an initial state
to the CSS. This approach is straightforward as
accurate simulation codes for nonlinear parabolic
PDEs are available, e.g., the MatMOL toolbox
(Vande Wouwer et al., 2004). Despite the possibly
large computation time, DDS yields the entire
transient behaviour towards the CSS related to a
certain start-up procedure, which is useful for the
operators. Initially, a uniform reactor temperature
equal to the jacket temperature is assumed. To
check whether a symmetric CSS is attained, two
measures from Gosiewski (2004) are employed.

Based on preliminary sensitivity analysis results,
the jacket fluid temperature Tw, the jacket length
Lj and the switching time τ are selected as the
most important parameters to optimise the reac-
tor performance, while accounting for the upper
reactor temperature constraint Tul. Tw and τ are
continuous variables, whereas Lj is inherently dis-
crete due to the spatial discretisation. Therefore, a
continuous nonlinear optimisation problem in Tw

and τ is solved repeatedly with the Matlab routine
fmincon for a grid of jacket lengths. The optimal
parameters are finally determined by selecting the
lowest cost value over all jacket lengths.

Table 1. Parameter values.

Parameter Value Units

Values selected from Smets et al. (2002)

Cin = 0.02 kmole/m3

E/R = 5681 K
L = 1 m
k0 = 106 1/s
Tin = 340 K
v = 0.1 m/s

4h
ρf cpf

= 0.2 1/s
−ΔH
ρf cpf

Cin = 85 K

Values selected from Eigenberger and Nieken (1988)

D = 5 · 10−3 m2/s
ε = 0.8 [-]
λeff = 2.06 · 10−3 kW/m/K
ρcp = 400 kJ/m3/K

ρf cpf = 0.5 kJ/m3/K
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Fig. 1. Influence of the number of isothermal jack-
ets of equal length on (i) the concentration
and reactor temperature (top), (ii) the jacket
fluid temperature (middle), and (iii) the min-
imal TC criterion value (bottom).

4. NUMERICAL RESULTS

The parameter values are displayed in Table 1. As
the aim is to compare both strategies for the case
studied by Smets et al. (2002), most parameters
originate from this study, while missing parame-
ters for the RFR case have been filled up by values
used by Eigenberger and Nieken (1988).

4.1 Classic tubular reactor configuration

For the steady-state optimisation of the classic
tubular reactor the influence of the number of
isothermal intervals of equal length N is studied.
The resulting profiles for the jacket fluid tem-
perature Tw, the reactor temperature T and the
concentration C are displayed for increasing N
together with the evolution of the different costs.

For the terminal cost (TC) criterion (see Fig. 1),
the jacket fluid temperature profile consisting of
different isothermal jacket parts converges to-
wards the optimal infinite dimensional one as the
number of jacket parts N increases, inducing (i)
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Fig. 2. Influence of the number of isothermal jack-
ets of equal length on (i) the concentration
and reactor temperature (top), (ii) the jacket
fluid temperature (middle), and (iii) the min-
imal TIC criterion value (bottom).

reactor temperature profiles closer to the desired
trapezoidal shape and (ii) lower terminal cost val-
ues. A local higher value can be found, whenever
the discretisation grid corresponds less to the op-
timal switching structure. An acceptable approxi-
mation can be obtained with 15 equidistant parts,
yielding cost values within 5% of the optimal cost
of 0.93733 · 10−4 kmole/m3.

For the terminal and integral cost (TIC) criterion
(see Fig. 2), the optimal temperature profile con-
ceptually consists of two parts. In the first part
the temperature is raised to an intermediate value
of about 378 K, which has to be kept constant
in the second part. Again, increasing the number
of isothermal jackets induces temperature profiles
approaching the optimal infinite dimensional one.
Accordingly, the cost values decrease, but only
slightly. It should be noted that for both criteria
a drastic cost decrease is observed when using a
distributed jacket temperature (N ≥ 2) instead
of an isothermal jacket (N = 1), illustrating the
efficiency of the here proposed operation policy.
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Checking the start-up behaviour from an empty
reactor at 340 K ensures for all values of N a
safe convergence towards the previously optimised
steady-state. It is observed that the fluid flows
as a plug through the reactor inducing sharp
fronts without exceeding the temperature bounds.
Because of space limitations the transient figures
are not displayed.

4.2 Reverse flow configuration

For the optimisation of the RFR, a value of
1000 s is selected as initial guess for the switching
time in order to have the same ratio of residence
time over switching time as in Eigenberger and
Nieken (1988). The initial guess for the jacket
fluid temperature Tw is selected based on (i)
the maximum value of the previously optimised
trapezoidal temperature profiles for the classic
reactor and (ii) the RFR sensitivity results for the
maximum reactor temperature Tmax as a function
of the jacket fluid temperature Tw (see Fig. 3).
This procedure yields 360 K and 350 K as initial
Tw guesses for the terminal and the combined
terminal and integral cost criterion, respectively.
For both criteria the evolution of the costs, the
optimal switchings and the optimal jacket fluid
temperatures as a function of the jacket length are
depicted together with the optimal CSS profiles.

For the terminal cost criterion a continuous opti-
misation of the jacket fluid temperature Tw and
the switching time τ is performed for a grid of
jacket lengths from 0.4 to 1 m in steps of 0.1 m.
The bounds on the switching time and the jacket
fluid temperature are respectively, 100 and 2500 s,
and 330 and 370 K. As can be seen in Fig. 4,
once a minimum jacket length has been exceeded,
hardly any influence on the cost is visible. How-
ever, a minimum cost of 2.0884 · 10−4 kmole/m3

is obtained with a jacket of 0.9 m, a switching
time of 590.1 s and a jacket fluid temperature of
368.5 K. The resemblance between the resulting
optimal CSS concentration and temperature pro-
files (see Fig. 4) and the profiles for the classic
tubular reactor (see Fig. 1) is remarkable. The
minimal RFR cost value corresponds to a cost
value obtained with 4 isothermal jacket parts of
equal length (1.2586·10−4 kmole/m3) for the clas-
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Fig. 4. TC criterion, optimal jacket fluid tem-
peratures and switching times vs. the jacket
length (top). Optimal CSS concentration and
reactor temperature profiles (bottom).

sic reactor. The corresponding conversion costs
are 4.1473 · 10−4 kmole/m3 for the RFR, and
2.2259 · 10−4 kmole/m3 for the classic reactor,
respectively. Thus, although a similar trapezoidal
shape is induced by the RFR, a higher (conver-
sion) cost is found because the upper temperature
limit cannot be reached as closely as with a classic
configuration with a limited number (N ≥ 4) of
isothermal jackets.

A similar procedure is applied to the terminal
and integral cost criterion. The bounds for Tw

remain unaltered, but the upper bound for τ is
now increased to 5000 s. As also observed for
the classic configuration, the terminal and integral
cost is less sensitive with respect to the parameters
(see Fig. 5). Although the minimum cost is found
for a jacket length Lj = 0.5 m (J ′

TIC = 1.4615 ·
10−3 kmole/m3), it is possible to find for each
jacket length an appropriate switching time and
jacket fluid temperature which result in nearly the
same performance. Therefore, a jacket length of
0.9 m is here selected as the optimal one although
it does not yield the best overall performance
(J ′

TIC = 1.5273 · 10−3 kmole/m3). However, this
configuration leads to the lowest conversion cost
value (J ′

1 = 1.4593 · 10−3 kmole/m3) and the
longer jacket allows to directly influence a larger
reactor part, which is advantageous from a control
and safety point of view. The corresponding opti-
mal switching time and jacket fluid temperature
are 1007.3 s and 352.9 K, respectively.
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Fig. 5. TIC criterion, optimal jacket fluid tem-
peratures and switching times vs. the jacket
length (top). Optimal CSS concentration and
reactor temperature profiles (bottom).

Comparing the resulting RFR profiles with the
ones for the classic reactor, highlights two ob-
servations. First, there is a temperature decrease
towards the end, and second, the constant tem-
perature level is higher. These observations can
easily be explained because the intrinsic decrease
at the reactor end leads to smaller contributions to
the energy cost at the end, which can be compen-
sated by higher temperatures in the middle of the
reactor. However, the corresponding cost values
(J ′

1 = 1.4593 · 10−3 kmole/m3 and J ′
3 = 1.5941 ·

10−3 kmole/m3) are larger than all equivalents
for a classic reactor, indicating that the higher
temperatures in the middle (and the higher con-
version), cannot compensate for the temperature
decrease and conversion loss at the end. Checking
the start-up behaviour reveals no complex phe-
nomena and ensures a safe convergence to the
CSS. The corresponding figures are omitted due
to space limitations.

5. CONCLUSIONS

In this paper two jacketed tubular reactor config-
urations have been compared for a practical real-
isation of (near-)optimal trapezoidal temperature
profiles. As a first option the jacket is discretised
in a finite number of isothermal parts of which
the temperatures have to be optimised. A second
option is to implement a flow reversal strategy
which directly leads to trapezoidal temperature

profiles and has the jacket fluid temperature, the
switching time and the jacket length as main
degrees of freedom. Two cost criteria have been
considered which both involve a conversion and
an energy cost. For both options a reasonable
approximation of the optimal steady-state profiles
and a safe convergence during start-up has been
obtained. The classic configuration outperforms
the reverse flow reactor, when a sufficient number
of isothermal intervals is installed. However, the
more isothermal intervals, the more complex the
control scheme will be. The flow reversal strategy
requires more equipment and its more complex
(cyclic) behaviour may hamper the control design.
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