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Abstract: A linear infinite dimensional state space representation of a catalytic flow
reversal reactor is used to formulate a state LQ-feedback operator via the solution
of a Riccati differential equation. Flow velocity is used to keep the temperature
and mole fraction of reactant in the reactor moving along a desired stationary
state. Numerical simulations are used to show the performance of the formulated
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1. INTRODUCTION

Catalytic flow reversal reactors (CFRR) are fixed-
bed reactors with periodic reversal of the flow di-
rection. The primary advantage of the technology
is that the thermal capacity of the solid material
within the reactor acts as a regenerative heat ex-
changer, allowing autothermal operation without
the use of additional energy supply. Catalytic flow
reversal reactors have received much attention
in recent years (Matros and Bunimovich, 1996)
and have been used for many reacting systems,
including oxidation of volatile organic compounds
(VOCs), oxidation of sulphur dioxide (SO2) and
methane combustion.

For exothermic reactions, reversing the flow direc-
tion periodically creates a heat trap effect. This
effect can be used to achieve and maintain an en-
hanced reactor temperature compared to a single
flow direction mode of operation.
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To control the temperature and conversion in a
CFRR unit, Budman et al. (1996) used a feedback
PID and a feedforward control strategy, both
with set points obtained from operability map
(parametric study). A model predictive control
scheme was presented by Dufour and Toure (2004)
for the combustion of volatile organic compounds
in a CFRR unit.

Linear-Quadratic (LQ) optimal control has been
used to control flow reversal reactors in Edouard
et al. (2005). In Eduard et al., a LQ controller
was formulated and applied to a CFRR unit with
fast frequency of flow reversal. For this specific
case of operation, Eduard et al. took advantage of
the high frequency of flow reversal and approxi-
mated the mathematical model of the reactor by
a countercurrent reactor system. A LQ controller
was obtained from a linear model derived by lin-
earization of the countercurrent model at a con-
stant operating condition and a finite difference
discretization of the resulting model.

In this paper, a linear-quadratic optimal controller
is formulated for a catalytic flow reversal reactor
using an infinite dimensional Hilbert space rep-
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resentation of the system. The LQ controller is
formulated to keep the distribution of the tem-
perature and mole fraction of reactant along the
reactor at stationary state by using the flow ve-
locity. A linear infinite dimensional state space de-
scription is used to formulate the controller. Using
the infinite dimensional state space, a state LQ-
feedback operator is computed via the solution of
a Riccati differential equation.

Our motivation to select an LQ controller was
based on the fact that LQ control is considered
key technique due to the fact that it provides an
optimal solution with respect to a clearly defined
objective. In addition, LQ control has been largely
studied for infinite dimensional systems. Our ob-
jective was therefore to analyze the performance
of such a reference controller in a process example
(catalytic reactor) and provide results that can be
used to evaluate its performance and possibly its
limitations.

2. PRINCIPLE OF OPERATION

The principle of the heat trap effect in catalytic
flow-reversal reactors is illustrated in Figure 1.
Figure 1(a) illustrates a reactor temperature pro-
file that might be observed in a standard uni-
directional flow operation for a combustion. If a
temperature pattern, shown in Figure 1(a) and
(b) is established, the reverse flow operation can
then be used to take advantage of the high tem-
peratures near the reactor exit to pre-heat the
reactor feed. A quasi-steady state operation may
be achieved in which the reactor temperature
profile has a maximum value near the centre of
the reactor, which slowly oscillates as the feed
is periodically switched between the two ends of
the reactor, as shown in Figure 1(c-e). The quasi-
steady state operation will be referred in this
paper as stationary state.

3. MODEL DESCRIPTION

The dynamic of the catalytic flow reversal reactor
can be described by partial differential equations
(PDE’s) derived from mass and energy balances.
A wide range of model with different degrees of
complexities have been proposed in the literature
for catalytic flow reversal reactors for different
reacting systems. One of the most complete mod-
els is given in Salomons et al. (2004), where a
2-dimensional dynamic heterogenous convection-
diffusion-reaction model is used to simulate the
effect of different operating conditions on the com-
bustion of lean fugitive emissions. In this work,
a simplified model is used where plug flow is as-
sumed and a single average value for the states
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Fig. 1. Illustration of the heat trap effect for
reverse flow operation.

variables in the fluid and solid phase is used
(pseudo-homogeneous model).

3.1 Mathematical model:

The basic equations for the mass and energy bal-
ances for a pseudo-homogeneous plug-flow model
are:

ε
∂Y

∂t
+ αvs

∂Y

∂z
=−k0e

−E
RgT Y (1)

η
∂T

∂t
+ αvsρ

∂T

∂z
= (−ΔHr)k0Ce

−E
RgT Y (2)

where the parameters k0, η and ρ are given by
k0 = (1 − ε)μeffk∞, η = ρs(1 − ε)Cps and ρ =
ρfCpf , and with the boundary conditions given,
for t ≥ 0, by:

Y (0, t) = Yin and T (0, t) = Tin. (3)

Y and T are the average mole fraction of methane
and temperature, respectively; vs is the superficial
velocity, α is the fraction of mass flow velocity
(used as manipulated variable) and ε is the bed
porosity. Values for the model parameters are
given in Table 1. The initial conditions are given,
for 0 ≤ z ≤ 1 by:

Y (z, 0) = Y0(z) and T (z, 0) = T0(z). (4)

The fluid in the reactor is treated as an ideal
gas: ρf = P

RgT and C = P
RgT . We neglect any

pressure drop in the reactor and we consider that
density is constant at conditions equal to the inlet
conditions. These considerations result in vs = vin

(Salomons et al., 2004).
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3.2 Dimensionless Model

In this subsection the dynamics of the catalytic
flow-reversal reactor will be described by means of
an infinite-dimensional system description derived
from an equivalent nonlinear PDE dimensionless
model. Such an approach is standard in tubular
reactor models, see e.g. (Aksikas et al., 2007). Let
us consider the following state transformation:

θ1 =
Yin − Y

Yin
, θ2 =

T − Tin

Tin
(5)

Then we obtain the following equivalent represen-
tation of the model (1)-(3):

∂θ1
∂t

= αv1
∂θ1
∂z

+ k1(1 − θ1) exp(
μθ2

1 + θ2
) (6)

∂θ2
∂t

= αv2
∂θ2
∂z

+ k2(1 − θ1) exp(
μθ2

1 + θ2
) (7)

where the dimensionless v1, v2, ν, k1 and k2 are
related to the original parameters as follows:

v1 = −vin

ε
, v2 = −vinρTin

η
, μ =

E

RgTin
,

k1 =
k0

ε
exp(−μ), k2 =

(−ΔHr)Ck1ε

η

3.3 Infinite Dimensional Linearized Model

Let us denote by θe := (θ1,e, θ2,e) and αe the
dimensionless equilibrium profile of the model (6-
7). Let us consider the state transformation:

x(t) :=
[
x1(t)
x2(t)

]
:=

[
θ1(t) − θ1,e

θ2(t) − θ2,e

]
, (8)

with the new input vector u(t) := α(t)−αe. Then
the linearization of the system (6)-(7) around its
equilibrium profile leads to the following linear
infinite-dimensional system on the Hilbert space
H: {

ẋ(t) = Ax(t) +Bu(t)
x(0) = x0 ∈ H .

(9)

Here A is the linear operator defined on its do-
main:

D(A) = {x : x is a.c.,
dx

dz
∈ H and x(0) = 0},(10)

by

Ax =

⎡
⎢⎣ α1

d.

dz
+ β1I β2I

β3I α2
d.

dz
+ β4I

⎤
⎥⎦

[
x1

x2

]
, (11)

where the functions αi and βi are given by

αi(z) = viαe(z), i = 1, 2,

β1(z) =−k1 exp(
μθ2,e

1 + θ2,e
),

β2(z) =
μk1(1 − θ1,e)
(1 + θ2,e)2

exp(
μθ2,e

1 + θ2,e
),

β3(z) =−k2 exp(
μθ2,e

1 + θ2,e
),

β4(z) =
k2(1 − θ1,e)
(1 + θ1,e)2

exp(
μθ2,e

1 + θ2,e
).

The operator B ∈ L(L2(0, 1),H) is the linear
bounded operator given by

B =
[
γ1I
γ2I

]
, (12)

where the functions γi are given by

γi(z) = vi
dθi,e

dz
, i = 1, 2.

The following proposition deals with the expo-
nential stability of the linearized catalytic flow-
reversal model. This property will play an im-
portant role in LQ-control design, especially the
existence and the uniqueness of a solution (see
Lemma 2 below).

Proposition 1. Let us consider the operator A de-
fined by (10)-(11). Then A generates an exponen-
tially stable C0-semigroup on H.

Proof: By using the fact that the functions
αi, i = 1, 2 are negative (since the constants
vi, i = 1, 2 are negative), then it can be shown
that the eigenvalues of the operator A are of the
following form, see (Christofides, 2001, p. 18):

λA = −∞ + nπi, n = −∞, . . . ,∞.

4. CONTROLLER DESIGN

In this section, we are interested in the linear-
quadratic optimal (LQ) problem (see e.g. (Curtain
and Zwart, 1995) and references therein) in order
to design a state LQ-optimal controller for the
linearized catalytic flow-reversal reactor described
by (9)-(12). First let us define an output function
y(·) by

y(t) = Cx(t) :=
[
w1I w2I

]
x(t), t ≥ 0, (13)

where w1, w2 : [0, 1] → IR are continuous func-
tions. Now let us consider the LQ-optimal control
problem: for any initial state x0 ∈ H, find a square
integrable control uopt ∈ L2[0,∞;L2(0, 1)] which
minimizes the cost functional

J(x0, u) =

∞∫
0

(〈Cx(t), Cx(t)〉+〈u(t), Ru(t)〉)dt,(14)
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where R is a coercive function. The solution of this
problem can be obtained by finding the positive
self-adjoint operator Qo ∈ L(H) which solves the
operator Riccati equation, viz

[A∗Qo +QoA+ C∗C −QoBR
−1B∗Qo]x = 0,(15)

for all x ∈ D(A), where Qo(D(A)) ⊂ D(A∗).

It is known that under the exponential stabiliz-
ability of (A,B) and the exponential detectability
of (C,A), the operator Riccati equation admets
a unique positive self-adjoint solution: see e.g.
(Curtain and Zwart, 1995, Section 6.2). Then the
following lemma is an immediate consequence of
Proposition 1.

Lemma 2. Consider the linearized catalytic flow-
reversal reactor model (9)-(11), with control oper-
ator B given by (12) and observation operator C
given by (13). Then the operator Riccati equation
(15) has a unique positive self-adjoint solution
Qo ∈ L(H) and for any initial state x0 ∈ H, the
quadratic cost (14) is minimized by the unique
control uopt given on t ≥ 0 by

uopt(t) = Kox(t) , x(t) = e(A+BKo)tx0 , (16)

where the optimal feedback

Ko = −R−1B∗Qo ∈ L(H,L2(0, 1)) (17)

is stabilizing, i.e. the feedback C0-semigroup
(e(A+BKo)t)t≥0 is exponentially stable. In addi-
tion, the optimal cost is given by J(x0, uopt) =
〈x0, Qox0〉.

Now we are in a position to establish the following
theorem:

Theorem 3. Let us consider the linearized cat-
alytic flow-reversal reactor model (9)-(11), with
control operator B given by (12) and observation
operator C given by (13). Let ψ1, ψ2 be the solu-
tions of the system equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2β1ψ1 + w2
1 − γ2

1r
−1ψ2

1 =
d(α1ψ1)
dz

,

2β4ψ2 + w2
2 − γ2

2r
−1ψ2

2 =
d(α1ψ2)
dz

,

β3ψ2 + β2ψ1 + w1w2 = γ1γ2r
−1ψ1ψ2,

ψ1(1) = 0,
ψ2(1) = 0.

(18)

Then the optimal LQ-feedback oprator is given for
all x ∈ H by

Kox = −γ1ψ1x1 − γ2ψ2x2. (19)

Proof: In view of the structure of the operator A
and in order to solve the operator Riccati equation

(15), it seems natural to look for a solution of the
form

Qo =
[
ψ1I 0
0 ψ2I

]
.

On the other hand, it can be shown by straightfor-
ward calculation that if the functions ψ1 and ψ2

are solutions of the differential equations system
(18), then Q0 is solution of the operator Riccati
equation (15).

5. NUMERICAL SIMULATION

To show the effectiveness of the LQ-feedback con-
troller, the formulated controller is used for a
CFRR unit for combustion of methane emissions.
CFRR technology has been suggested for the com-
bustion of lean methane streams for reduction
of greenhouse gases emissions from natural gas
transmission facilities, upstream oil and gas pro-
duction facilities and coal beds (Hayes, 2004).

To simulate the CFRR operation, we use a 1-
dimensional pseudo-homogeneous model as given
in equation (1)-(2). Model parameters were taken
from Salomons et al. (2004) and are given in Table
1. All computer simulations were performed in
COMSOL multi-physics environment. A scheme
of the reactor configuration used in simulations is
given in Figure 2.

Table 1. Model Parameters.

Parameter Value

k∞ 1.35E5 s−1

ε 0.51
E 54,400 kg · m2 · s−2 · mol−1

Rg 8.314 kg · m2 · s−2 · mol−1 · K−1

ρs 1240 kg · l−1

Cpf 1,066 J · kg−1 · K−1

Cps 1,020 J · kg−1 · K−1

ΔHr -802E3 J · mol−1

P 101325 kg · m−1s−2

vin 1 m · s−1

M 0.02896 kg · mol−1

μeff 1

Using an arbitrarily chosen nominal operating
conditions,

Y (0, t) = 0.001, T (0, t) = 298K, vin = 1 m · s−1

and the pseudo-homogeneous model given in
equation (1)-(2), the stationary state is computed
for a full cycle time of 600 sec (forward + reverse
flow), see Figure 3.

An LQ-feedback controller is computed using the
linearized model, equation (9). Linearization is
performed around a single distribution of the
stationary state. It is assumed that the process
model does not change much with linearization
profile used for a relatively narrow range of flow
reversal frequencies. The study of the effect of the
linearization profile is subject of future work.
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Catalyst

Fig. 2. Ilustration of CFRR unit used for numer-
ical simulations. Arrows indicate inlet/outlet
gas flow direction.

The LQ-control law that results from solving the
system of equations (18) is given in Figure 4
for w1(z) = 1 and R(z) = 1. To evaluate
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Fig. 3. Temperature distributions at stationary
state. Distributions are taken every 50 sec.
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Fig. 4. LQ-feedback functions ψi for w1(z) = 1
and R(z) = 1 .

the performance of the controller, we computed
the closed-loop response for a case where the
initial state variables are not at stationary state
(Figure 5). For the controller calculations, all
state variables are assumed to be available and
120 discrete points are used as measuring points.
The closed-loop temperature response at three
points along the reactor is shown in Figure 6. It
can be observed that the state converges quickly
to the stationary state. The trajectory of the
manipulated variable is shown in Figure 7.

A comparison of the closed-loop response and the
open loop response for the reactor system that is
started with a distribution of the states that do
not correspond to the stationary state is given in
Figure 8.

Since it is not practical to manipulate the flow
velocity (αvs) along the axial coordinate, we ap-
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Fig. 5. Initial temperature distribution for closed-
loop simulation (dashed line) and tempera-
ture distribution at stationary state at the
beginning of the forward flow operation (solid
line).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
350

400

450

500

550

Time, sec

T
em

pe
ra

tu
re

, K

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
650

700

750

800

850

Time, sec

T
em

pe
ra

tu
re

, K

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
700

750

800

850

Time, sec

T
em

pe
ra

tu
re

, K

b)

a)

c)

Fig. 6. Closed-loop temperature trajectory (solid
line) and temperature trajectory at station-
ary state (dashed line) for a) z = 0.2, b)
z = 0.4, c)z = 0.5.
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Fig. 7. Closed-loop input variable (solid line) and
input variable at stationary state (dashed
line) for a) z = 0.2, b) z = 0.4, c)z = 0.5.

proximate the optimal distribution of the manip-
ulated variable by averaging the flow velocity. We
consider the case where the flow velocity can be
imposed at two spatial points: reactor inlet and
mid-section. The velocity for the first half of the
reactor, imposed at the reactor inlet, is obtained
from averaging the optimal input from z = 0 to
z = 0.5. The velocity for the second half of the
reactor, imposed at the mid-section of the reactor,
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Fig. 8. Closed-loop input variable (solid line),
open-loop input variable (dot-dashed line)
and input variable at stationary state (dashed
line) for a) z = 0.2, b) z = 0.4, c)z = 0.5.

is obtained from averaging the optimal input from
z = 0.5 to z = 1. The closed-loop temperature
response at three points along the reactor is shown
in Figure 9. The trajectory of the input variable at
the inlet and midsection of the reactor are shown
in Figure 10.
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Fig. 9. Closed-loop temperature trajectory (solid
line) and temperature trajectory at station-
ary state (dashed line) for a) z = 0.2, b)
z = 0.4, c)z = 0.5 (averaged input).

6. CONCLUSIONS

In this paper, we presented the formulation of
an LQ-feedback controller for a catalytic flow-
reversal reactor. A linear infinite dimensional
state-space representation of the system is used
to formulate a state LQ-feedback operator via
the solution of the corresponding Riccati algebraic
equation. The controller is aimed at keeping the
state variables, temperature and concentration, at
the stationary state. Flow velocity is used to con-
trol the system. Numerical simulations are used
to show the response of the closed loop system.
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Fig. 10. Closed-loop input variable (solid line)
and input variable at stationary state (dashed
line) for a) z = 0 and b) z = 0.5 (averaged
input).
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