
8th   International   IFAC   Symposium   on
Dynamics and Control of Process Systems

 

A LAGRANGEAN DECOMPOSITION
HEURISTIC FOR THE SIMULTANEOUS

SCHEDULING AND OPTIMAL CONTROL OF
MULTI-GRADE POLYMERIZATION

REACTORS

Sebastian Terrazas-Moreno ∗

Antonio Flores-Tlacuahuac ∗,1

Ignacio E. Grossmann ∗∗
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Abstract:
In this work we present the simultaneous scheduling and optimal control of
polymerization reactors using a previously proposed MINLP formulation. The
problem is then solved in two ways: first by directly using an Outer Approximation
technique, and second, by applying a Lagrangean decomposition scheme that
allows the independent solution of the scheduling and optimal control problems.
However, both subproblems are linked by a set of Lagrangean Multipliers that
evolve during an iterative solution process using a subgradient method. During
this process the decomposition approach yields an upper bound to the original
problem while a lower bound is obtained heuristically based on the solution of the
decomposed problem. The methodology is tested on two polymerization processes
and compared vs. the solution obtained when the problem is solved directly. In
both cases optimal solutions are almost identical while solution times for the
larger problem were reduced significantly when using the decomposition approach.

Copyright c©2007 IFAC

1. INTRODUCTION

The importance of industrial production schedul-
ing and control is broadly recognized. An in-
terest for addressing simultaneous scheduling
and control (SSC) problems has appeared re-
cently. (Mahadevan et al., 2002),(Feather et al.,
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2004),(Nystrom et al., 2005). Because schedul-
ing and control problems have strong interac-
tions it looks reasonable to consider them in a
simultaneous and integrated framework. Tradi-
tionally, scheduling and control problems were
approached independently. As a matter of fact,
scheduling problems commonly assume constant
transition times and almost any aspect related
to process dynamics. On the other hand, process
control problems normally assume fixed produc-
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tion sequences. The close relationship between
scheduling and control problems and the im-
portance of a simultaneous solution is currently
recognized (Mahadevan et al., 2002),(Feather et
al., 2004),(Nystrom et al., 2005). Moreover, a re-
cent publication (Mishra et al., 2005) concluded
that not including process dynamics in schedul-
ing problem formulations leads, in many cases,
to obtaining suboptimal solutions. The rigorous
inclusion of process dynamics for optimal grade
transitions in a scheduling formulation results in
a Mixed Integer Dynamic Optimization (MIDO)
problem. Our research group has proposed a for-
mulation for solving simultaneous scheduling and
control problems (Flores-Tlacuahuac and Gross-
mann, 2006).

An important area of application for a simul-
taneous scheduling and control (SSC) approach
is the polymer industry. It is now common for
polymerization plants to operate in a continuous
manner while several product grades are produced
using the same equipment. Two recent works
(Nystrom et al., 2005; Prata et al., n.d.) addressed
scheduling and grade transition for polymeriza-
tion systems. In these works the MIDO problem
was transformed into a MINLP by a suitable dis-
cretization of the transition time, and then solved
using a commercially available MINLP solver or
coupling an NLP and a MIP solver through an
iterative process.

The objective of this work is to solve the Simul-
taneous Scheduling and Control problem based
on our proposed formulation (Flores-Tlacuahuac
and Grossmann, 2006) by exploiting its decompos-
able nature through a Lagrangean Decomposition
technique (Guignard and Kim, 1987).

2. PROBLEM DEFINITION

In polymerization plants a certain number of
polymer grades are specified in terms of their
conversion and/or molecular weight distribution
(MWD). These grades are to be formed using a
single CSTR operating in an isothermal manner.
Each grade is obtained from the same raw mate-
rial but using different operating conditions. Since
the reactor operates continuously, the switch from
a certain grade to another involves a dynamic
transition which is carried out by manipulating
the monomer feed flow rate or the initiator feed
flow rate. The transition is accomplished once
the conversion and/or MWD are within a certain
tolerance of their desired steady state value.
In terms of the scheduling problem lower bounds
for the demands rates are specified for all dif-
ferent polymer grades. In order to satisfy these
demands all grades must be manufactured once
during a production cycle whose cyclic time is

to be determined. The manufacturing operation
involves inventory holding costs and transition
costs. Inventory holding costs, raw material costs
and product prices of each grade are known, as
well as steady state and upper and lower bounds
for all variable.
Given the above stated problem the objective of
the present work is to find the optimal manu-
facturing cycle in order to meet all grades de-
mands while maximizing profit. The optimal cycle
is described by the following decision variables.
(1) Grade manufacturing sequence. (2) Optimal
dynamic transitions. (3) Optimal cycle duration.
(4) Amounts manufactured of each grade. For a
complete description of the proposed MINLP for-
mulation used to directly solve the simultaneous
problem, the reader is kindly refereed to reference
(Flores-Tlacuahuac and Grossmann, 2006)

3. SOLUTION METHODOLOGY

The nature of the problem at hand suggests the
use of a decomposition technique in which the
dynamic optimization problem and the scheduling
problem are solved separately. The Lagrangean
Decomposition technique (Guignard and Kim,
1987) is the base of the solution methodology pre-
sented in this paper. The scheduling and control
formulation share the binary variables associated
with a production schedule, the variables of tran-
sitions durations, and the variable of cycle dura-
tion. These variables are substituted by equivalent
copies in either the scheduling or the control prob-
lem, and a new set of constraints makes the copies
equal to the original variables. This new set of con-
straints is relaxed and added to the objective func-
tion using a lagrangean multiplier (Fisher, 1981).
This modified SSC formulation is separable into a
scheduling subproblem and a control subproblem
where the sum of the objective functions of the
two subproblems represents an upper bound to
the objective function of the SSC original prob-
lem. A previous work that deals with the ap-
plication of Lagrangean Decomposition (van den
Heever et al., 2001) proposes a heuristic in which
the binary variables in the original formulation are
fixed so that a lower bound is obtain by solving the
resulting NLP. In this paper the binary variables
obtained in the scheduling subproblem are fixed
in the original SSC formulation to obtain an NLP
that yields a lower bound in each iteration of
the heuristic decomposition algorithm. Once an
upper bound and a lower bound are obtained one
Lagrangian iteration is completed, after which the
lagrangian multipliers are updated. This heuristic
algorithm stops once the upper and lower bound
converge within a defined tolerance or once the
maximum number of iterations is exceeded. Since
the algorithm is heuristic, the maximum number
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of iterations can be determined using different
criteria. Generally this number will be set so that
it is evident that the algorithm is not making any
significant progress, but it can also be determined
by the point in which bounds begin to degenerate
or subproblems become infeasible. Due to space
limitations, the SSC formulation and it’s decom-
position are not included in this paper, and the
reader is referred to the following works for more
details (Flores-Tlacuahuac and Grossmann, 2006;
Terrazas-Moreno et al., 2006; Terrazas-Moreno et
al., 2007). A formal mathematical description of
the decomposition technique follows.

3.1 Lagrangean Decomposition

Guignard and Kim (Guignard and Kim, 1987)
present Lagrangean Decomposition technique in
which certain variables are duplicated and set
equal by new constraints. These new constraints
are then relaxed through Lagrangean Relaxation
(Fisher, 1981; Geoffrion, 1974) yielding a decom-
posable model over two or more subsets of con-
straints. Consider the following mathematical pro-
gramming problem:

(P ) max {fx|Ax 6 b, Cx 6 d, x ∈ X}
It is equivalent to:

(P
′
)max {fx|Ay 6 b, Cx 6 d, x ∈ X, y = x, y ∈ Y }

A Lagrangean relaxation is obtained for P
′

by
relaxing the constraint y = x. This procedure
yields a decomposable problem, thus the name
”Lagrangean Decomposition”:

(LDu)
max {fx + u(y − x)|Cx 6 d, x ∈ X,

Ay 6 b, y ∈ Y }
= max {(f − u) x|Cx 6 d, x ∈ X}
+ max {uy|Ay 6 b, y ∈ Y }

If the constraints are convex then LDu is an upper
bound for P for any given u (Fisher, 1981).
Then if all of the constraints are convex and all
of the variables are continuous, the tightest upper
bound of LDu is equal to the optimal for P :

P = min
u

LDu

In the presence of integer variables and other
nonconvexities a duality gap may exits (Guignard,
1995), (Bazaraa and Goode, 1979). Since this is
the case of the current formulation the search for
an optimum will be performed using an heuristic
approach (van den Heever et al., 2001). In such an

approach upper bounds of the original problem
are generated by solving a problem of the type
LDu and lower bounds are generated by using a
heuristic technique to produce feasible solutions
to the original problem P . The multipliers used
to solve the subproblems are updated iteratively
using a formula proven to work well in practice
(Fisher, 1985):

uk+1 = uk + tk(yk − xk)
and

tk+1 =
αk(LD(uk)− P ∗)
‖ yk − xk ‖2

Where tk is a scalar step size and α is a scalar
usually set between 0 and 2 and then decreased
when LDu fails to improve in a fixed number of
iterations.

3.2 Langrangean Decomp. in integer programming

Michelon and Maculan (Michelon and Maculan,
1991) present the extension of Lagrangean De-
composition for integer nonlinear programming
with linear constraints. Polymerization reaction
systems usually do not present only linear con-
straints, but the handling of integer variables
during the decomposition can still be applied.
Using again the example of problem (P), but in
the context of integer programming, we have the
following:

(P ) max {fx|Ax 6 b, Cx 6 d, x ∈ X}

Where X is a set for which the integrality con-
straints are defined, e.g. X = {0, 1}. The feasible
domain of (P) remains unchanged (Michelon and
Maculan, 1991) if we add the constrains:

y = x

Ay 6 b, Cx 6 d and y ∈ CO(X)

where CO(X) represents the Convex Hull

of set X

A lagrangean relaxation is obtained for (P) by
relaxing the constraint y = x. The same procedure
described under the Lagrangean Decomposition
section of this paper can be followed afterwards.
The important fact to take notice of, is that the
copy (y) of the original binary variable (x) is
continuous, since the domain of the new variable
is the convex hull of X, denoted as CO(X). As
mentioned above the set X = {0, 1}, and its
convex hull includes all real numbers between
0 and 1. This allows the confinement of true
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binary variables to the scheduling subproblem,
while their continuous copies are used in the
significantly more nonlinear control subproblem.

4. CASE STUDIES

In order to analyze the performance of the de-
composition technique, applied to simultaneous
scheduling and optimal control, it was tested on
two polymerization processes. In the following
sections the processes are described and the re-
sults using a direct method and a decomposition
scheme are compared and discussed.

High Impact Polystyrene (HIPS)

The isothermal free radical bulk polymerization
of styrene was carried out in a CSTR. The
single CSTR model has been used in previous
works (Flores-Tlacuahuac et al., 2000; Flores-
Tlacuahuac et al., 2005) to describe this process.
Five different HIPS grades were defined as desired
products for the production cycle, corresponding
to 15, 25, 35, 40 and 45 percent monomer con-
version. Due to gel effect, normally higher conver-
sions are not obtained in a single reactor. Instead,
a sequence of CSTRs is used for that purpose.
Monomer flow rate (Qm)was chosen as the ma-
nipulated variable during grade transitions.The
simultaneous scheduling and control formulation
cast as a MIDO problem was transformed into a
MINLP using the SDO technique with 20 finite
elements and three collocation points. In a first
step the problem was solved directly in GAMS
using DICOPT, a MINLP solver that uses the
outer approximation algorithm.

Methyl-Methacrylate Polymerization (MMA)

The isothermal free radical bulk polymerization
of Methyl-Methacrylate was carried out in a
CSTR. The system has already been presented by
(Congalidis et al., 1989) to address grade transi-
tion problems from a control point of view. Four
polymer grades (A,B, C, D) were defined which
correspond to molecular weight distributions of
15000, 25000, 35000 and 45000. The initiator flow
rate (Qi) was selected as the manipulated variable
to achieve grade transition. The exact same solu-
tion procedure followed in the HIPS example was
used for the MMA production system.

4.1 Results Isothermal HIPS

4.1.1. Transition times calculated through an it-
erative process. In this section the simultane-
ous scheduling and optimal control formulation
used corresponds to that previously presented
by our research group (Flores-Tlacuahuac and
Grossmann, 2006). A precise description of this

Table 1. Optimal solution and solution
time for direct and decomposed meth-
ods when transition times are calculated

iteratively for the HIPS example.

Direct Method Decomposition

Optimum 102 738 102 729
Sol. Time 5126 cpu s 4172

Table 2. Upper and lower bounds pro-
gression during solution process when
transition times are calculated itera-

tively for the HIPS example.

Iteration Lower Bound Upper bound

1 96562 2.2e8
2 96559 3.1e9
3 78003 3.1e9
4 78002 3.1e9
5 NA 102781
6 102111 102772
7 102729 102772
8 102705 102779

Table 3. Optimal solution and solution
time for direct and decomposed meth-
ods when transition times are calculated
as decision variables for the HIPS exam-

ple.

Direct Method Decomposition

Optimum 545.99 545.88
Sol. Time 7640 cpu s 3126

method is found in (Flores-Tlacuahuac and Gross-
mann, 2006). All calculations were performed us-
ing a 1.6 GHz processor. The comparison between
the direct and decomposed approach is found in
table 1 and the evolution of the Lagrangean solu-
tion is presented in table 2.

4.1.2. Transition times calculated as decision vari-
ables. A modification to the original formula-
tion (Flores-Tlacuahuac and Grossmann, 2006)
for the MINLP was carried out and the problem
was solved using both the direct and the decom-
posed approaches. The modification consisted on
including the duration of the transition stages as
direct decision variables. The cost of transition is
now expressed as the cost of raw materials con-
sumed during transition rather than the squared
difference of each state in each collocation point
vs. a desired value. The modified approach is
also detailed in another work (Terrazas-Moreno
et al., 2006). The comparison between the direct
and decomposed approach for this modified for-
mulation is found in table 3 and the evolution of
the Lagrangean solution is presented in table 4.
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Table 4. Upper and lower bounds pro-
gression during solution process when
transition times are calculated as deci-
sion variables for the HIPS example.

Iteration Lower Bound Upper bound

1 330.50 737.60
2 545.88 813.08
3 545.88 737.61
4 330.50 737.61
5 545.88 813.09

Table 5. Optimal solution and solution
time for direct and decomposed meth-
ods when transition times are calculated

iteratively for the MMA example.

Direct Method Decomposition

Optimum 55.02 55.02
Sol. Time 40.27 cpu s 120 cpu s

Table 6. Upper and lower bounds pro-
gression during solution process when
transition times are calculated itera-

tively for the MMA example.

Iteration Lower Bound Upper bound

1 55.02 81.61
2 55.02 81.67
3 55.02 81.74
4 55.02 81.81
5 55.01 55.04
6 55.01 55.03
7 55.01 55.03
8 55.01 55.04

4.2 Results isothermal MMA

All results for the isothermal MMA CSTR are
equivalent to those presented for the HIPS exam-
ple.

4.2.1. Transition times calculated through an it-
erative process. The comparison between the
direct and decomposed approach is found in table
5 and the evolution of the Lagrangean solution is
presented in table 6.

4.2.2. Transition times calculated as decision vari-
ables. The comparison between the direct and
decomposed approach for this modified formula-
tion is found in table 7 and the evolution of the
Lagrangean solution is presented in table 8.

4.3 Discussion

An analysis of the optimal solutions is found in
(Terrazas-Moreno et al., 2006). The discussion
section of this work is therefore based on the per-
formance of the described decomposition heuristic
when compared to the direct solution method.

Table 7. Optimal solution and solution
time for direct and decomposed meth-
ods when transition times are calculated
as decision variables for the MMA ex-

ample.

Direct Method Decomposition

Optimum 32.60 32.81
Sol. Time 71.71 cpu s 240 cpu s

Table 8. Upper and lower bounds pro-
gression during solution process when
transition times are calculated as deci-
sion variables for the MMA example.

Iteration Lower Bound Upper bound

1 31.75 86.92
2 31.75 86.92
3 32.43 87.64
4 32.43 87.64
5 31.54 86.78
6 32.50 87.64
7 32.60 87.15
8 32.60 86.54
9 32.81 87.82
10 31.75 86.92

The differences between the optimal solutions
found by the direct and decomposed methods is
not significant for any of the previous examples.
For the MMA system with time determined as a
decision variable, the optimal solution obtained
with the decomposition heuristic is slightly better
than that found with the direct method. This
can be explained by the fact that the system is
nonlinear and nonconvex and all solvers used for
obtaining the presented results can only guaran-
tee local solutions. The Lagrangean decomposi-
tion heuristic worked particularly well for both
systems when transition times were determined
through an iterative process and not as direct
decision variables. This remark is based on the
fact that the upper and lower bounding of the
problem converged to the optimal solution after
a certain number of iterations. When time is
introduced as a decision variable lower bounds
generate the optimal solution rather quickly but
upper bounding remains loose throughout the
iterative process. The difference between upper
and lower bounding is 26% for the HIPS exam-
ple and 62% for the MMA example. This was
also reported by (van den Heever et al., 2001)
and it is not surprising given the nonlinearity
and nonconvexity of the systems. The fact that
the solution method with and without transition
times as degrees of freedom behaved differently is
explained by the nonconvexities introduces when
transition times are included as decision variables.
The solution times for the HIPS system were con-
siderably lower when the decomposition approach
was used. This was not the case for the MMA
system, although both the direct method and the
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decomposed method present solution times in the
order of a few minutes. The higher solution times
for the MMA example using the decomposition
technique are well justified since a slightly better
optimum was found.

5. CONCLUSIONS

A decomposition that exploits the nature of the
simultaneous scheduling and control problem was
presented. The resulting formulation casts the
scheduling problem and the dynamic optimization
as separate subproblems linked by a set of La-
grangean multipliers. A solution methodology was
applied in which an upper bound for the original
maximization problem is set by the decompo-
sition scheme and a lower bound was obtained
heuristically. This method has been previously
applied to a different kind of problem (van den
Heever et al., 2001), and in this work it has been
proven to be effective for simultaneous schedul-
ing and control problems. Moreover, the method
becomes more effective as problems grow larger
and more complex. More complicated examples,
not included in this paper, are being solved by
our team (Terrazas-Moreno et al., 2007), and it
is our experience that the benefits of using the
decomposition become more evident as the prob-
lems grow in size and complexity. This explains
the differences in performance of the method for
the MMA example and the HIPS example in this
paper, since the former is significantly smaller and
less nonlinear than the latter.
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