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1. ORIGIN OF THIS WORK

The following text stood at the beginning of this
project:

Parameter estimation by non-linear regression
can often be a difficult and time consuming pro-
cess, particularly in the early stages of an investi-
gation when relatively little data is available and
parameter estimates may be highly correlated.

However, in these circumstances, which may arise
for example in the early stages of process devel-
opment, it may be more important to have a gen-
eral impression of the feasible range of parameters
rather than a precise location of the best value.
If the development has some further objective in
mind it is important to know how sensitive the
value of this objective is to changes in parameter
values within the feasible region.

A method should be developed for displaying on a
grid of values of the parameters, regions in which
the parameters are likely to occur on the basis of
current data. This display should be updated as
new experimental information becomes available.
It should be possible to display on the grid the
values of an objective function which depends upon
the parameters being estimated.

When a simple grid representation has been ob-
tained, the possibility of improvements may be

considered by e.g. automatically modifying the grid
or applying interpolation procedures. 1

This text stimulated looking into finding a re-
cursive procedure for non-linear parameter iden-
tification. The procedure should be robust and
apply to dynamic plants, as the group was deeply
involved in batch process research. The text points
towards process design, but the problem is cer-
tainly at least equally relevant to modelling for
process control and may also extend to secondary
applications like adaptive control.

The problem should be viewed from a proba-
bilistic point of view: how does the probability
distribution (objective function) change as more
information becomes available. Besides these re-
quirements, an additional one was added, namely
the ability of the procedure to handle stochastic
inputs, as it was observed that the input to the
batch processes we were looking at displayed such
characteristics. The nonlinearity in the parameter
space was a must, as almost all models exhibit
this property whilst linearity in state and input
seemed little of a limitation.

1 late David W T Rippin (internal report 1977)
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1.1 Framework

The setting stimulated the use of a probabilistic
based method that can handle input variations as
well as measurement variations and is of recursive
nature. This settles the choice quite obviously to
be a Kalman filter and since one deals with an
experiment to experiment kind of environment
and/or experimental data taken by a data ac-
quisition system, the filter would operate in the
discrete time domain. Since the Kalman filter
can also be derived from probabilistic arguments
utilizing the Bias theorem, all one needs to do is
to extract this information from the filter. The
problem statement also states that the parameter
space may be discretised. Though that may not
be a requirement, it may be an essential feature
for implementing such theory in the form of a
computing procedure.

The project was executed in the seventies and
a recent literature search revealed that the sub-
ject was essentially untouched since that time
when one slowly discovered the richness of such
problems. The theories that were consequently
developed found - for various reasons - only a few
applications and most of them were not particu-
larly successful as too little experience with the
techniques were accumulated. This, in turn, had
the effect that the application domain pulled back.
Consequently also implementation and theory de-
velopments stopped and the body of knowledge
necessary to transfer the theoretical results into
industry did not accumulate sufficiently. From to-
day’s point of view these failures seem not enough
of a good reason to throw away all the knowledge
that was accumulated in this field during this
period, which probably is the main motivation to
write this paper and bring this nearly forgotten
subject up to the surface again.

2. THE APPROACH

The problem formulation asks for an iterative up-
dating of parameters and a probabilistic criterion
for selecting the ”best” parameters most likely in
a discretised parameter space. The latter induces
the thought of using an estimator that is based
on the Bias theorem. It was also thought that
stochastic variations in the input of the plant are
of importance, as mentioned, which lead to look
into Kalman filtering. The idea follows largely a
publication by Lainiotis (Lainiotis, 1976).

2.1 Set-up

• Model : The dynamic part of the model is:

x(k + 1) := F(k + 1, k, θ)x(k) +

+G(k + 1, k, θ)w(k) .

The state is thereby nonlinearly affected by the
defined parameter vector θ and the white input
noise is coloured by the matrix G.

The static part, representing the link between the
state and the measurement (output):

y(k) := H(k, θ)x(k) + v(k); θ ∈ Θ ,

is again nonlinearly dependent on the parameters,
whilst a simple random error is added.

• Required properties : We request the two
stochastic inputs w and v to be independent and
Gauss-normal distributed:

E [w(k)] := 0; E
[
w(k)w(k)T

]
:= Q(k, θ)δk,j ,

E [v(k)] := 0; E
[
v(k)v(k)T

]
:= R(k, θ)δk,j .

The variance-covariance matrices may be a func-
tion of the parameters too. The two signals shall
be independent of each other and of the initial
state

E
[{w(k) − E [w(k)]}vT (k)

]
:= 0 ,

E
[{x(0) − E [x(0)]}vT (k)

]
:= 0 .

• Initial conditions : For the initial conditions,
the initial state is Gauss normal distributed with
a mean x̂(0|0, θ) and the variance P(0|0, θ).

• Measurements : The procedure will use a
sequence of measurements λk := {y(0), . . . ,y(k)}
and the parameters are in the space Θ.

• Parameter estimate : In the continuous
domain the parameters are weighted over the
defined domain:

θ̂ :=
∫

Θ

θ p
k
(θ|λk) dθ .

With p
k
(θ|λk) being the conditional probability

density function of the parameters given the ob-
servations λk.

• State estimate : is simply the expectation
after having ”seen” a measurement history λk

x̂(k|k, θ) := E [x(k|λk, θ] .

• Kalman filter : Based on these definitions
and assumptions, the Kalman filter can be derived
((Jazwinski, 1970)):

x̂(k|k, θ) := x̂(k|k − 1, θ) + K(k, θ) ê(k|k − 1, θ) ,

P(k|k, θ) :=
[
I − K(k, θ)H(k, θ)

]
P(k|k − 1, θ)

with:
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x̂(k|k − 1, θ) := F(k, k − 1, θ) x̂(k − 1|k − 1, θ) ,

e(k|k − 1, θ) := y(k) − H(k, θ)x(k, k − 1, θ)

K(k, θ) := P(k|k − 1, θ)H(k|k − 1, θ)

L(k|k − 1, θ) ,

L(k|k − 1, θ) := [H(k, θ)P(k|k − 1, θ)H(k, θ) +

+R(k, θ)]−1
,

P(k|k − 1, θ) := F(k, k − 1, θ)P(k − 1|k − 1, θ)

FT (k, k − 1, θ) +

+G(k, k − 1, θ)Q(k − 1, θ)

GT (k, k − 1, θ) .

The first of the above block of equation is simply
the state propagation according to the model,
namely an autonomous process, in this case. The
second equation gives the output error, namely
the difference between the measurements and the
predicted output. The K is the Kalman gain, the
gain in the loop feeding the error back into the
estimator for forcing the state to converge. The
L−1 matrix is the cumulative variance in the error
and, whilst it is usually not lifted out as a special
feature of the Kalman filter, it is essential for our
purpose as it is the basis for the ”confidence”
measure later being derived. Finally the variance
in the state estimate is captured in P.

• Bayes Theorem :

p(θ|λk) :=
M(k|k − 1|θ) p(θ|λk−1)∫

Θ
M(k|k − 1|θ) p(θ|λk−1) dθ

,

M(k|k − 1|θ) := |L(k|k − 1, θ|0.5 eN(k) ,

N(k) :=−1
2
||ê(k|k − 1, θ)||2L(k|k−1,θ) .

The Bayes theorem forms a recursive structure
which updates the probability of the parameters
in the parameter space, which is exactly what was
asked for.

• Quantification : Since p(θ|λk−1) is infinite di-
mensional, a discrete approximation is introduced
(Lainiotis and Deshpande, 1974):

p(θ|λk−1) :=
m∑

i:=1

pi(θ|λk−1) δ(θ − θi) .

This yields a discrete representation of the Bayes
theorem:

pi(θi, λk−1) :=
M(k|k − 1|θi) pi(θi, λk−1)∑m
i M(k|k − 1|θi) pi(θi, λk−1)

.

The derivation of Bayes theorem is the result of
applying repetitively the multiplication rule:

p(Aj |B) :=
p(B,Aj)∑m

i:=1 p(B,Ai)
.

p(B,Aj) is the marginal distribution p(θ, zk) :=
M(k|k − 1|θ) . Applying the multiplication rule
repetitively:

ln p(θ, λk) :=
k∑

r:=1

ln M(r|r − 1|θ) .

The joint probability for the parameters is also
quantified:

p(θq,i) :=
m∑

i:=1

p(θq, λk) δ(θq − θq,i) ,

with θq,i being the q-th component of the param-
eter vector of dimension r and the i-th quantifi-
cation. The marginal distribution is then

p(θa,i, λk) :=
m∑

i:=1

r∑
q:=1,q �=a

p(θq,i, λk) ,

and using this in the Bayes theorem gives:

p(θa,i|λk) :=
p(θa,i, λk)∑m

i:=1 p(θa,i, λk)
.

And for the parameter:

θ̂a :=
m∑

i:=1

p(θa,i|λk) θa,i .

For the conditional probability at every grid point:

p(θ|λk) :=
p(θ, λk)∑m

i:=1 p(θa,i, λk)
.

3. COMPUTATIONAL EXPERIMENT

For the demonstration of this procedure, a non-
linear model was chosen that is relatively simple,
namely an ISTR with two reactions running in
parallel. Choosing a particular parameterisation
on can cast the problem into the following form:

x(k) :=

⎡
⎢⎣

1
1 + θ1

0

0
1

1 + θ2

⎤
⎥⎦x(k − 1) + w(k − 1) ,

z(k) := x(k) + v(k) .

For the initial conditions, parameters and the
stochastic disturbances one chose:

x(0) :=
[

1
1

]
,

θ :=
[

0.5
0.5

]
,

wi := N(0, 0.04) ; i = 1, 2 ,

vi := N(0, 0.04) ; i = 1, 2 .
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Figure 1: Shows snapshots of probability distribu-
tions in the two-parameter space and the marginal
distributions for 5, 10, ..., 100 samples (explana-
tions see figure 2).
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3.1 Results

The attached figure1show snapshots of the de-
velopment of the probability distribution in the
parameter space as the number of experiments
increases. In each column on the right the dis-
tribution is shown in a 3D-plot, on the left the
marginal distribution functions for the two pa-
rameters. The currently best estimate is indicated
with a full line and the nominal values are shown
with dotted lines.

first moment

0,0,0

0.1

θ2

θ1

p(θ|λk)

0,0

1,1

p(θ2,i|λk)

p(θ1,i|λk)

nominal val

99% confidence limits

1,1

Figure 2 : Explanation to figure 1.

One can clearly see on how the probability builds
up a sharper and sharper peak converging to the
true parameter values. The estimate is also clearly
unbiased. The original work compares these re-
sults with a simple minimal sum of squares error
measure on the same discretised parameter do-
main. In that case the procedure builds up a bias
as expected, which is due to the neglected input
error , as this estimator is not un-biased.

4. CONCLUSIONS

The recursive discretised parameter estimation
procedures, as they were to a large extent in-
troduced in the 70ties, are excellently suited for
recursive nonlinear parameter estimation. This
procedure could indeed be used as originally sug-
gested by David W T Rippin in the design of pro-
cesses, but equally well in batch-to-batch model-
based planning and control or other adaptive
schemes.
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6. APPENDIX

This appendix derives the variance of the output
error. To ease the writing, we reduce the problem
to a scalar plant and introduce the notation: 11
for k|k, θ, 10 for k|k − 1, θ, 00 for k − 1|k − 1, θ, 1
for k|θ and 0 for k− 1|θ. For the variance of w we
use q and for the variance of v we use r.

The model equations are simplified to:

x1 := f10 x0 + w0 , (1)

y1 := h1 x1 + v1 . (2)

It is to be shown that

E
[
(y1 − E [y1]

2)
]

:= h2
1 p10 + r1 .

Proof:

E
[(

y1 − E [y1]
2
)]

:=

:= E
[
((h1 x1 + v1) − E [(h1 x1 + v1)])

2
]

,

:= E
[
((h1 x1 − E [h1 x1]) + (v1 − E [v1]))

2
]

,

:= E
[
(h1 (x1 − E [x1]) + v1)

2
]

,

:= h2
1 E

[
(x1 − E [x1])

2
]

+

+2h1 E [x1 − E [x1]] E [v1] + E
[
v2
1

]
,

h2
1 E

[
(x1 − E [x1])

2
]

+ r1 .

E
[(

x1 − E [x1]
2
)]

:=

:= E
[
((f0 x0 + w0) − E [(f0 x0 + v0)])

2
]

,

:= f2
0 E

[
(x1 − E [x1])

2
]

+ q0 ,

:= f2
0 p00 + q0 ,

:= p10

Which, when substituted, gives the desired result.
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