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Abstract: A new Recurrent Neural Network Model (RNNM) has been applied for 
measurement data filtering and parameters plus state estimation of hydrocarbons 
biodegradation process, contained in polluted slurry, treated in a rotating bioreactor. The 
pattern used for RNNM back-propagation learning is composed by six input variables and 
three output variables. The total time of learning is 200 epochs of 76 iterations each and 
the Mean Squared Error reached is below 1.25%. Then the RNNM is simplified and used 
to design a sliding mode control the two-input two-output high order nonlinear plant. The 
MSE% of control reached 1% at the end of the process. Copyright © 2007 IFAC 
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1. INTRODUCTION 

 
Recent advances in understanding of the working 
principles of artificial Neural Networks (NN) has 
given a tremendous boost to identification and 
control tools of nonlinear systems, (Narendra, and 
Parthasarathy, 1990). The main network property 
namely the ability to approximate complex non-
linear relationships without prior knowledge of the 
model structure makes them a very attractive 
alternative to the classical modelling and control 
techniques. This property has been proved by the 
universal approximation theorem (see Haykin, 1999). 
Among several possible network architectures the 
ones most widely used are the Feedforward NN 
(FFNN) and Recurrent NN (RNN). In a FFNN the 
signals are transmitted only in one direction, starting 
from the input layer, subsequently through the 
hidden layers to the output layer, which requires 
applying a tap delayed global feedbacks and a tap 
delayed inputs to achieve a nonlinear autoregressive 
moving average neural dynamic plant model. A RNN 
has local feedback connections to some of the 
previous layers. Such a structure is suitable 

alternative to the FFNN when the task is to model 
dynamic systems, and the universal approximation 
theorem has been proved for RNN too. The 
preference given to RNN identification with respect 
to the classical methods of process identification is 
clearly demonstrated in the solution of the “bias-
variance dilemma” (see Haykin, 1999). In (Boskovic, 
and Narendra, 1995) a comparative study of linear, 
nonlinear and neural-network-based adaptive 
controllers for a class of fed-batch baker’s and 
brewer’s yeast fermentation is done. The paper 
proposed to use the method of neural identification 
control, given in (Narendra, and Parthasarathy, 
1990), and applied FFNNs (multilayer perceptron 
and radial basis functions NN). The proposed control 
gives a good approximation of the nonlinear plants 
dynamics, better with respect to the other methods of 
control, but the applied static NNs have a great 
complexity, and the plant order (and plant structure, 
especially for MIMO plants) has to be known. The 
application of RNNs could avoid these problems and 
could reduce significantly the size of the applied 
NNs. Furthermore, in biotechnology there exists a 
great variety of processes with incomplete 
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information where analytical models description is 
missing. One of them is the hydrocarbon degradation 
process in rotating drum. The control and 
manipulation of the hydrocarbon removal by a bio-
stimulation process is a complex task in itself due to 
the great variety of native micro-organisms involved. 
Considering the lack of knowledge about each 
micro-organism’s metabolism and their interactions, 
it is of our concern to develop a neural model that 
might correlate on the time the behaviour of some 
variables such as residual hydrocarbon concentration, 
soil viscosity, evaporated water, temperature, 
velocity of agitation, etc. at which occurs that bio-
degradation process. 
 
In some early papers, (see Baruch, et al., 2004), the 
state-space approach is applied to design a RNN, 
defining a Jordan canonical two or three layer 
Recurrent Trainable Neural Network (RTNN) model 
and a Backpropagation (BP) algorithm of its 
learning. This RNN model is a parametric one and it 
serves as state and parameter estimator, which 
permits to use the estimated states and parameters 
directly for process control. In (Baruch et al., 2004) 
this general RTNN approach is applied in an indirect 
neural control scheme for identification and control 
of continuous wastewater treatment fermentation 
bioprocess, where unfortunately the plant and 
measurement noises affected the control precision. In 
the proposed paper we go ahead extending the 
topology of this RNN with local and global 
feedbacks. So we obtain a topology with built in 
output filter, capable to decrease measurement noise 
and to correlate different process measurements in 
order to obtain a complete process neural model 
learned by the BP algorithm. Then this RNNM is 
simplified and could be used for different control 
system design methods so to achieve the control 
objectives using the available process measurements. 
 

 
2. DESCRIPTION OF THE BIO-DEGRADATION 

PROCESS IN A ROTATING DRUM 
 
Biological treatment is attractive as a potentially 
low-cost technology, which converts toxic organic 
contaminants into CO2 and biomass. Since the 70’s, 
this technology has been applied for the hydrocarbon 
degradation, and today, it is considered as the best 
alternative to cleanup polluted soils. For this 
bioprocess, one challenge is to provide enough O2 
and nutrients to enable rapid conversion of 
contaminants by either indigenous microorganisms 
or inoculated species. Another challenge is to 
achieve efficient contact between the active micro-
organisms and the contaminants, which may 
represented a problem with in-situ treatment. An 
attractive alternative to overcome this problem is to 
apply a biological treatment in slurry phase using 
Horizontal Rotating Drum (HRD) (see Fig. 1). The 
HRD can effectively mix heterogeneous blends of a 
wide range of particle sizes, and high solid 
concentration (more than 60 %), (Gray et al., 1993). 
The HRD operated with oxygen supply or aeration.  

 
 
Fig. 1. Schematic diagram of a rotating drum system. 
 
Independently of the type of HRD operation (open or 
close), the insufficiency of water decreased the 
efficiency of hydrocarbon degradation in HRD 
favouring the formation of hydrocarbon balls 
(Alexander, 1999; Cookson, 1995; Gray et al., 1993). 
So one objective of the process control is to maintain 
the humidity at 60%, which is the maximal solid 
concentration determined as the best for hydrocarbon 
removal from polluted soils treated in open rotating 
slurry bioreactors (Manilla-Pérez et al., 2004).  
 
Nowadays, semi empirical models, based on the 
Monod equation, have been developed to predict 
micro-organism growth as a function of available 
contaminants concentration. However, as the 
application of such models requires experimental 
work for calculating the kinetics parameters 
involved, so an alternative modelling technique is 
required. The RNNM offers many advantages as the 
possibility to approximate complex non linear high 
order multivariable processes, as the biodegradation 
process is (Caudill and Butler, 1995). 
 
The bioremediation of polluted soils selected for 
modelling purpose was carried out by bio-stimulation 
in slurry phase using an open HRD. A silt loam (sand 
36.5%w/w, silt 62.5% w/w and clay 1% w/w) soil of 
an average diameter of 15 µm, particle diameter in 
the range 2 - 75 µm, was used (see Cantelaube et al, 
1997; Rodriguez et al, 2004). The soil was 
contaminated with 50000 ppm of crude oil collected 
from a contaminated zone located near from a 
petroleum refinery. The slurry was prepared with 
40% weight of soil (715 g) and 60% weight of a 
mineral solution (formula in kg⋅m-3: (NH4)2SO4, 19; 
KH2PO4, 1.7; MgSO4, 1; CaCl2⋅2H2O, 0.005; 
FeCl3⋅6H2O, 0.0025; yeast extract, 0.59; tergitol - 
0.5%), (for more details see Manilla-Pérez, et al., 
2004). The slurry was added to a HRD of 4 litters (13 
cm diameter by 30 cm long), which was opened, on 
the flat faces, for a natural air supply (see Fig. 1). 
The drum was operated during 19 days at a fix 
turning in the interval 3.5-20 RPM. During this time, 
the reactor was daily weight in order to replace the 
water lost, so to maintain constant the water 
concentration. Samples were removed each day for 
analysis of residual hydrocarbons, pH, water 
concentration and slurry viscosity. The hydrocarbon 
concentration was determined by an infrared 
spectrometer; the pH was measured with a Beckman 
Φ potentiometer; water concentration was calculated 
by difference of two sequence data of the drum 
weight; finally, slurry viscosity was measured with 
an AND Vibro-viscometer SV-10 (MED BY A&D 
LTD). The biodegradation process was repeated at a 
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different turning value (3.5, 5, 7.5, 10, 15, 20 RPM) 
in order to vary the oxygen available into the HRD.  
 
 

3. LEARNING PATTERN 
 
The learning pattern (see Fig. 2) used for RNNM 
training is composed by six input variables and three 
output variables. In order to avoid saturation 
problems in the RNNM training, the variables of the 
learning pattern are normalized in the interval 0-1. 
The measured variables are: Residual Hydrocarbon 
Concentration (RH), Evaporated Water (EW); Soil 
Viscosity (VISC), Added Water (AW); Temperature 
(T); Velocity of Agitation (VA). The RNNM outputs 
are: OUT (RH, EW, VISC).  
 
Depending on the available measurements and the 
control objectives, this model could be simplified, 
where the input- output pattern is chosen as: ILP 
(RH, EW, AW, VA); OLP (RH, EW). This reduced 
model will be used for sliding model control system 
design. 
 

 
4. RNNM TOPOLOGY AND LEARNING 

 
In the present paper, a modified version of the RNN 
(Baruch et al., 2004) is proposed to be used as a 
model of a degradation process in rotating drums. 
This RNN model has been used to predict a Bt 
fermentation process (Valdez-Castro et al., 2003), 
and biodegradation in biopile system (Dela Torre 
Sanchez et al., 2004). Block-diagrams of the RNN 
topology and its adjoint, are given on Fig. 3, Fig. 4. 
Following Fig. 3, and Fig. 4, we could derive the 
Backpropagation algorithm of its learning based on 
the RNN topology using the diagrammatic method of 
(Wan and Beaufays, 1996). Both block-diagrams and 
algorithms are given in vector-matricial form as: 
 

 
 
Fig. 2. The learning pattern. 
 
 

 
 
Fig.3. Block diagram of the RNNM. 
 

 
 
Fig.4. Block diagram of the adjoint RNNM. 
 

X(k+1) = A1X(k) + BU(k) - DY(k); 
Z(k) = Γ [X(k)]; Z1(k) = C Z(k) 

V(k+1) = Z1(k) + A2V(k); 
Y(k) = Φ[V(k)] 

A1 = block-diag (A1,i), |A1,i | < 1; 
A2 = block-diag (A2,i), |A2,i | < 1 

W(k+1) = W(k) +η ∆W(k) + α ∆Wij(k-1) 
E(k) = T(k)-Y(k) 

R1 = E(k) [1-Y2(k)] 
∆C(k) = R1 ZT(k) 
∆A2(k) = R1 VT(k) 

R = CT(k) E(k) [1-X2(k)] 
∆B(k) = R UT(k) 
∆D(k) = R YT(k) 

∆A1(k) = R XT(k-1) 
Vec(∆A2(k)) = R1▫V(k) 

Vec(∆A1(k)) = R▫X(k-1) 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 

 
Where: Y, X, U are output, state and input vectors 
with dimensions l, n, (l+m), respectively; here 
UT=[U1;T], where U1 is the real plant input vector 
with dimension m; T is the plant output vector with 
dimension l, considered as a RNN reference; A1, A2 
are (nxn) and (lxl)- local feedback block-diagonal 
weight matrices respectively, defined by (5), (6); 
B=[B1;B2] and C are [nx(l+m)] and (lxn)- weight 
matrices, where B1 corresponds to U1 and B2 
corresponds to T; D is a (nxl) global output closed 
loop matrix; Γ[.], Φ[.] are vector-valued tanh 
activation functions; W is a general weight, denoting 
each weight matrix (C, D, A1 , A2 , B) in the RNNM 
model, to be updated; ∆W (∆C, ∆D, ∆A1, ∆A2, ∆B), 
is the weight correction of W; η, α are learning rate 
parameters; ∆C, ∆A2 are weight corrections of the 
(lxn) learned matrix C and the (lxl) learned diagonal 
matrix A2; R1 and R are auxiliary vector variables; 
∆B, ∆D are weight corrections of the [nx(l+m)] 
learned matrix B and the (nxl) learned matrix D; the 
diagonals of the matrices A1, A2 are denoted by 
Vec(.) and equations (16), (17) represents its learning 
as an element-by-element vector products. The 
stability of the RNNM is assured by the restricted 
activation functions and by the local stability bound 
conditions, given by equations (5), (6). As it could be 
seen in Fig. 3, the first part of the RNNM, given by 
(1), (2) (without the global feedback entry) represents 
the plant model, and the second part, given by (3), 
(4) represents an output filter part. The complete 
RNN structure is in fact a full order state observer 
(Kalman – like filter) where the balance between the 
reference and feedback parts (B2T→DY) is achieved 
during the learning, when (E→0). The RNN was 
trained with four sets of experimental data. An 
experimental data set, not included in the training 
process, is used for RNN generalization. Due to the 
high scale variation of the variables, used in the 
training process, the experimental data were 
normalized in the range 0-1.  
 
A simplified version of this RNN model, containing 
only the plant part of the model is used as a base for 
the design of a Sliding Mode Control (SMC). In the 
following part it will be show that the indirect 
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adaptive neural control (see Baruch et al., 2004) 
could be derived as an SMC defining the Sliding 
Surface (SS) with respect to the plant output. 
 

 
5. SLIDING MODE CONTROL SYSTEM DESIGN 
 
Let us suppose that the identified nonlinear plant is 
given by the equations (1), (2) omitting the DY(k) 
part. The block diagram of the control scheme is 
shown on Fig. 5. It contains identification and state 
estimation RNNM and a SMC. The stable nonlinear 
plant is identified by a RNNM with topology, given 
by equations (1)-(6) learned by the stable BP-
learning algorithm, given by equations (7)-(17), 
where the identification error (8) tends to zero. The 
linearization of the activation functions of the 
simplified identification RNNM (1), (2), leads to the 
following local linear plant model: 
 

X(k+1) = A1X(k) + BU(k) 
Z(k) = F X(k); F = C Γ’ 

(18) 
(19) 

 
Where Γ’ is the derivative of the activation function 
and l = m, is supposed. Let us define the following 
SS as an output tracking error function: 
 
                  p  

S(k+1)=E(k+1)+∑ γi E(k-i+1);  |γi | < 1 
                               i=1 

 
(20) 

 
Where: S(.) is the Sliding Surface Error Function 
(SSEF); E(.) is the systems output tracking error; γi 
are parameters of the desired SSEF; p is the order of 
the SSEF. The tracking error is defined as: 
 

E(k) = R(k) − Z(k) (21) 
 
Where R(k), Z(k) are l-dimensional reference and 
output vectors. The objective of the sliding mode 
control systems design is to find a control action 
which maintains the systems error on the sliding 
surface which assure that the output tracking error 
reaches zero in p steps, where p < n. So, the control 
objective is fulfilled if: 
 

S(k+1) = 0 (22) 
 
The iteration of the error (21) gives: 
 

E(k+1) = R(k+1) − Z(k+1) (23) 
 
Now, let us to iterate (19) and to substitute (18) in it 
so to obtain the input/output local plant model, which 
yields: 
 

 
 
Fig. 5. Block diagram of the closed-loop system. 

Z(k+1) = F X(k+1) = F [AX(k) + BU(k)] (24) 
 
From (20), (22), and (23), it is easy to obtain: 
 

                        p 
R(k+1) – Z(k+1) + ∑ γi E(k-i+1) = 0 

                                     i=1 

 
(25) 

 
The substitution of (24) in (25) gives: 
 

       p 
R(k+1) – FAX(k) – FBU(k) + ∑γi E(k-i+1) = 0 

      i=1 

 
(26) 

 
As the local approximation plant model (18), (19), is 
controllable, observable and stable, (see Baruch et 
al., 2004), the matrix A1 is diagonal, and l = m, the 
matrix product (FB) is nonsingular, and the plant 
states X(k) are smooth  non-increasing functions. 
Now, from (26) it is easy to obtain the equivalent 
control capable to lead the system to the sliding 
surface which yields: 
 

              p 
Ueq(k)=(FB)-1 [–FAX(k)+R(k+1)+∑γiE(k-i+1)] 
            i=1 

 
(27) 

 
Following (Young et al., 1999), the SMC avoiding 
chattering is taken using a saturation function instead 
of sign one. So the SMC takes the form: 
 
            ⎧ Ueq(k),                     if ||Ueq(k)|| < Uo 

U*(k)=  ⎨           
            ⎩-Uo Ueq(k)/||Ueq(k)||, if ||Ueq(k)|| ≥ Uo. 

 
(28) 

 
The SMC substituted the multi-input multi-output 
coupled high order dynamics of the linearized plant 
with desired decoupled low order one. 
 

 
6. EXPERIMENTAL AND SIMULATION 

RESULTS 
 
6.1 Identification and States Estimation Using 

Experimental Data. 
 
The described above learning algorithm is applied 
simultaneously to 4 fermentation kinetic data, 
represented by its input/output learning data 
patterns, and containing 19 points each (one per 
day). The total time of learning is 200 epochs, 
where the epoch size, corresponding to the number 
of data, is 76 iterations. After each epoch of 
training, the 4 sets are interchanged in an arbitrary 
manner from one epoch to another. The learning is 
stopped when the MSE% of learning reached values 
below 1.5%, the MSE% of generalization reached 
valued below 2%, and the relationship 
|∆Wij(k)|/|Wij(k)|*100% reached values below or 
equal of 2% for all updated parameters. Graphical 
results of RNNM training are given in Fig. 6 for the 
last epoch of learning. In the graphics, the output 
variables of the RNNM are compared with the 
experimental data. The Fig. 6 a, b, c compared the 4 
kinetics experimental data with those, issued by the 
RNNM. The output process data of 76 points are the 
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hydrocarbon residual, the water requirements and 
the soil viscosity. The Fig. 6d represents the 
evolution of the mean squared error of 
approximation for whole learning process of 200 
epochs. An unknown set of kinetic data, containing 
19 points and repeated 4 times, so to maintain the 
same 76-points epoch size, is used as a validation 
(generalization) set, and these results are given on 
Fig. 7. The obtained graphical results of RNNM 
training and generalization shows a good 
convergence with an MSE% below 1.5% for the 
training and 2% for the generalization. 
 
 
6.2 Sliding Mode Control Simulation Using the 

Identification Results. 
 
The simplified process model has been used to 
design a SMC system. The RNNM particular model 
has two inputs (AW, VA), two outputs (EW, RH) 
and nine states. The SSEF is chosen as a first order 
one (p=1) with parameters Uo=1, γ=0.07, l=m=2. 
The control variables (AW, VA) are given on Figure 
8 for 76 points. The graphical simulation results of 
the controlled system outputs (EW, RH), and the 
MSE%, also for 76 points, are given on Fig. 9. The 
two system set points (continuous line) are compared 
with the plant outputs (EW, RH) (data point line) and 
are plotted subsequently for four sets of set point 
data. The obtained MSE% of control at the end of the 
process is below 1%. 
 
The behaviour of the control system in the presence 
of 5% white Gaussian noise added to the plant output 
has been studied accumulating some statistics of the 
final MSE% (ξav) for multiple run of the control 
program, which results are given on Table 1 for 20 
runs. The mean average cost for all runs (ε) of 
control, the standard deviation (σ) with respect to the 
mean value and the deviation (∆) are given by the 
following formulas, where the mean and standard 
deviation values of the process control output 
variables are also computed as: 
 

1

1
k

n

avkn
ε ξ

=
= Σ ; 2

1

1 n

iin
σ

=
= Σ ∆ ; 

 = - avξ ε∆ ; ε  = 0.6663 %; σ= 0.0593 % 

 
(29) 

 
(30) 

 
Where k is the run number and n is equal to 20.  
 
 

7. CONCLUSIONS 
 
This paper proposes a new full order observer-filter 
RNNM with closed loop topology for state and 
parameter estimation and measurement noise 
filtering of hydrocarbon degradation process carried 
out in a rotating drum system. The proposed RNNM 
has six inputs, three outputs and nine neurons in the 
hidden layer, with global and local feedbacks. The 
BP learning algorithm is derived using the 
diagrammatic method and the adjoint RNNM. 

  
 
Fig. 6. Graphical results of RNNM learning. a) EW; 

b) RH; c) VISC; d) MSE%. 
 

 
 
Fig. 7. Graphical results of RNNM generalization. 

a)EW; b) RH; c) VISC; d) MSE%. 
 

 
 
Fig. 8. Graphical results of SMC. a)VA; b) AW. 
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Fig. 9. Graphical results of SMC. a) EW; b) RH; c) 

MSE%. 
 

Table 1: Final means squared error (%) of control 
(ξav) for 20 runs of the control program

 
No 

 
 
 
 
 

MSE of 
Control  

 
No 

 
 
 
 
 

MSE of 
Control 

1 0.6434 11 0.6602 
2 0.6577 12 0.7759 
3 0.7669 13 0.7732 
4 0.6805 14 0.6566 
5 0.6662 15 0.6408 
6 0.5757 16 0.6481 
7 0.5835 17 0.6061 
8 0.7043 18 0.7240 
9 0.7040 19 0.6514 

10 0.6350 20 0.5725 
 
Then the obtained RNNM is simplified and used to 
design a SMC. The experimental and simulation 
identification and control results obtained exhibit a 
good convergence and precise reference tracking. 
The MSE% of the RNNM learning and 
generalization is below 1.5% (2% for generalization) 
and the MSE% of control is below 1%. The results 
could be improved augmenting the number of 
measurement points per fermentation and 
augmenting the number of fermentations per epoch.  
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