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Abstract: In this paper, a model-based optimal strategy is presented for the control of 
particle size in antisolvent crystallization. Size is controlled on demand by dynamic 
optimization using a population balance based model. Knowledge of the ternary solute-
solvent-antisolvent equilibrium and crystallization kinetics is crucial in this strategy and 
are both experimentally identified and incorporated in the model. The optimization is 
capable of determining the optimal antisolvent feed profile that achieves a desired particle 
size. Experimental validation of the strategy is carried out and presented herein. Such a 
strategy stands as a key solution to antisolvent operations ubiquitous in the 
pharmaceutical and fine chemicals industries.  Copyright © 2007 IFAC
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1. INTRODUCTION 

Crystallization is a widely used technique in solid-
liquid separation processes. The driving force in 
crystal formation is supersaturation. The trend of 
supersaturation generation during the process has a 
direct and significant role on crystal characteristics 
such as size, morphology and purity. There is a 
number of ways one can affect supersaturation 
including cooling and evaporation. In the last decade, 
salting-out as a means to induce supersaturation has 
been drawing more attention. In this method a 
secondary solvent known as antisolvent or 
precipitant is added to the solution resulting in the 
reduction of the solubility of the solute in the original 
solvent and consequently supersaturation is 
generated. Antisolvent crystallization is an 
advantageous method where the substance to be 
crystallized (solute) is highly soluble, has solubility 
that is a weak function of temperature, is heat 
sensitive, or unstable in high temperatures. This 
technique is an energy-saving alternative to 
evaporative crystallization, if the antisolvent can be 
separated at low (energy) costs.  

The rate of supersaturation generation is highly 
dependent on antisolvent addition rate. In operations 
where there is poor mixing regimes high local 
supersaturation at antisolvent induction point exists 
leading to excess primary nucleation and 
consequently resulting in fine crystal particle 
formation that easily tend to agglomerate (Takiyama 
et al. 1998). This fact and the strive for better 
operational policies have been the interest of many 
recent investigations. 

Experimental works looking at the effect of various 
operating conditions are numerous. Takiyama et al. 
(1998) investigated the effect of different 
concentrations of aqueous and antisolvent solutions 
on crystal shape and distribution. The main variable 
they studied was supersaturation. They proposed a 
mechanistic formulation in finding the relation 
between nucleation and supersaturation. Other works 
considered antisolvent concentration and feed rate 
effects on final crystal habit (Holmback & Rasmusan 
(1999), Oosterhof et al. (1999a), Taboada et al. 
(2000), Kaneko et al. (2002), Doki et al. (2002), 
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Kitamura & Sugimoto (2003) and Yu et al. (2005)). 
Since these kinds of systems are complex due to 
three components interacting with each other in two 
phases some thermodynamic and mass transfer 
studies are essential. Ho-Gutierrez et al. (1994) 
plotted solubility and phase diagrams for the two 
ternary systems of polyethylene glycol and aqueous 
solutions of sodium sulphate and sodium chloride. 
Oosterhof et al. (1999b) also investigated different 
antisolvents for sodium carbonate-water system and 
they found a correlation between salt solubility and 
water-antisolvent mixture decomposition at constant 
temperature. 

Unlike most works that study inorganic solute 
crystallization by organic antisolvents, Holmback & 
Rasmusan (1999) and Yu et al. (2005) considered 
organic solutions and water as second solvent. Size 
and morphology of benzoic acid crystals from 
ethanol-water system were investigated by 
Holmback & Rasmusan’s (1999) who varied the feed 
and bulk solution composition and feed rate. They 
observed that supersaturation mainly governs the 
mean size while solvent composition has significant 
effect on the crystal shape. Agglomeration and habit 
of paracetamol crystals were the focus of the study 
by Yu et al. (2005) who varied the agitation speed 
and feed rate. In their study they concluded that low 
agitation speed and high feed rate will result in 
excessive nucleation due to high local 
supersaturation leading to highly agglomerated 
product with lower mean size.  

In some other works antisolvent crystallization was 
applied in the production of anhydrous crystals. For 
instance Oosterhof et al. (2001) studied production of 
anhydrous sodium carbonate at room temperature 
using ethylene glycol and diethylene glycol as 
antisolvents. Unlike conventional crystallization 
methods that cannot produce anhydrous sodium 
carbonate (due to its instability in aqueous solutions 
at temperatures lower than boiling point of saturated 
soda ash solution), their method incorporating 
antisolvent showed success in doing so. 

Zhou et al. (2006) have carried out concentration 
controlled seeded antisolvent crystallization of a 
pharmaceutical compound using an algebraic 
equation for the solubility as a function of % solvent. 
The main objective of their feedback concentration 
control system was to keep the supersaturation low 
and constant. For this, different constant 
supersaturation values were investigated and their 
influence over nucleation discussed. In addition, they 
present simulation results investigating the 
antisolvent crystallization of paracetamol.  

Nonoyama et al. (2006) also present a simulation 
study on seeded solvent crystallization of an active 
pharmaceutical ingredient (API) by water addition to 
original solution. The model they incorporate 
neglects nucleation, breakage and agglomeration, 
and only considers a size independent growth kinetic 
derived from experimental studies. Their 
investigation avoids nucleation of undesired 

polymorph by keeping supersaturation at a certain 
level. 

In spite of all the previous works, there still exists a 
big gap in the control of the product crystal 
properties to desired values. Model-based dynamic 
optimization to determine optimal antisolvent 
crystallization strategies are poised to fill this gap 
and as far as the authors are aware, are not currently 
found in the literature. 

In this work, a population balance model for 
antisolvent mediated crystallization is developed, 
implemented and validated against experimental 
data. Optimization-based parameter estimation is 
used to arrive at solubility and kinetic sub-models. 
Model-based dynamic optimization studies were 
performed using the identified model calculating 
repeatable the optimal antisolvent feed trajectories 
for a range of particle size objectives. These 
optimization studies were validated experimentally 
by implementation within a distributed control 
system (DCS) environment. 

2. MODEL DEVELOPMENT AND 
IDENTIFICATION 

Since the crystallization process is a particulate one, 
the population balance equation (PBE) as proposed 
by Hulburt and Katz (1964) is used accounting for 
the evolution of crystal particles across temporal and 
size domains. For a batch crystallization system with 
crystal growth assumed to be non-dispersed and 
independent of crystal size and where agglomeration 
and attrition are considered negligible, the PBE 
simplifies to 

B
L

tLnG
t

tLn ),(),(    (1) 

where n(L,t) is the number density of crystals, t is 
time, L is the characteristic crystal size, G is the 
growth rate of the crystals and B is the nucleation 
rate which is equal to zero for all sizes but the first. 
The model was solved in gPROMS environment 
(Process Systems Enterprise Ltd, UK) using 
backward finite discretization across the size domain, 
transforming the PBE into a set of differential 
equations. The solubility and kinetic sub-models are 
discussed in the next sections with respect to the 
NaCl-water-ethanol system which is used in this 
study as the model antisolvent crystallization system.   

2.1 Solubility Model Identification

Knowledge of the equilibrium condition (solubility) 
of the crystallization system is crucial to the control 
of the particle size. We develop a model describing 
the solubility of the NaCl in the solvent-antisolvent 
mixture based on experimental solubility data (Yeo 
et al. 2006). This data corroborates with other data 
presented elsewhere for the same ternary system 
(Farelo et al., 2004). This model describing the 
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saturated concentration dependence on solvent 
concentration in solute free mixture is shown in 
Equation 2, 

** )1(
waterC

XK
XKC     (2) 

where C* is the molality of solute in the mixture and 
*
waterC is molality of solute in pure water and has a 

value of 33.80 gram/100 grams of water of at 
constant temperature 25°C. K, like *

waterC  is constant 
at constant temperature and is equal to 0.83094. X is 
the mass fraction of antisolvent in solute-free 
mixture.  

2.2 Kinetic Model Identification

With respect to the modeling of antisolvent 
crystallization, limited work has been presented in 
the literature. No comprehensive studies are 
available that address model-based studies in this 
field. The best research addressing the antisolvent 
kinetics of nucleation and growth seems to be that of 
Jones and Mydlarz’s (1990). In their study, they 
develop kinetic models for MSMPR crystallization. 
Their growth rate model is size dependent while its 
kinetic parameters are functions of antisolvent to 
water weight ratio. In another work, Mydlarz and 
Jones (1991) consider agglomeration kinetics in 
addition to nucleation and growth. Later, Nyvlt 
(1992) in his work mathematically investigates a 
kinetic model for nucleation rate. His model is a 
function of growth rate and supersaturation which 
depends on antisolvent addition rate. Nyvelt’s 
conclusion suggests that the antisolvent addition 
should be slow in the early stages of the batch and 
increase proportionally with the crystal surface area. 
Such kinetic model developments are rare in the 
literature and present an opportunity to repostulate 
the mechanisms behind such complex kinetic 
phenomena. 

In this study we incorporate a growth kinetic 
formulation proposed by Linnikov (2006) who 
neglected the effect of secondary nucleation and 
implemented seed addition. Seeding is not 
considered in the current study, and so a nucleation 
kinetic model is needed. Such a nucleation model is 
not available in the literature, however kinetics for 
cooling crystallization of sodium chloride as reported 
by Akal et al. (1986) are used. Together, the growth 
kinetics of Linnikov (2006) and nucleation kinetics 
of Akal et al. (1986) are referred to as ‘Literature’ 
kinetics in the rest of the paper. The Literature 
kinetic model is refined in this study via an 
optimization based (maximum likelihood criteria 
available from gEST function in gPROMS) 
parameter estimation. For this estimation step and 
model refinement, three experiments were conducted 
under antisolvent feeding conditions. The kinetic 
parameter set that provides the highest probability of 
the model predicting the real data from these three 

experiments was identified. The final nucleation and 
growth models settled at are

T
b

b MCkB      (3) 

RTE
g CekG /     (4) 

respectively, where C is the supersaturation, kb and 
b are the nucleation rate parameters, MT is the 
magma density, kg and E are growth rate parameters. 

3. EXPERIMENTAL 

Figure 1 shows the schematic of the experimental 
apparatus, instrumentation and control system. In all 
experiments, purified water by a Milli-Q system was 
used. The purities of sodium chloride (NaCl) salt 
(Merck) and ethanol (Merck) used in the experiments 
were 99.5% and 99.9% respectively.  

Fig. 1. Experimental Setup. A - Crystallization 
vessel, B - Temperature control system, C -  
Pt100 thermocouple, D - Ethanol addition line, E 
- Pump, F - Ethanol reservoir, G - FBRM probe, 
H - Analogue output card, I - FBRM control 
computer, J - DCS Station, K - Controller I/O 
terminals, L - DCS server, M - Feed profile to 
pump. 

Ethanol was added to the aqueous NaCl solution 
using a calibrated digital dosing pump (Grundfos, 
Denmark). The ethanol addition profile was 
implemented and controlled from within a distributed 
control system (DCS) environment (Honeywell, 
USA). Temperature was controlled, at 25°C for all 
experiments, using a Pt100 thermocouple connected 
to heating/cooling circulator (Lauda, Germany). 
Particle chord length was measured online every 2 
seconds using focused beam reflectance 
measurement (FBRM) probe (Mettler-Toledo 
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Lasentec Products, USA). Infrequent samples were 
removed iso-kinetically from the crystallizer and 
particle size was measured offline using Mastersizer 
2000 particle size analyser (Malvern Instruments, 
UK). The FBRM signal was converted to 4-20 mA 
signals using an 8-channel analogue output PCI card 
inserted in the FBRM computer. This was then 
connected to the DCS for data monitoring and 
archiving.   

4. MODEL-BASED OPTIMAL STRATEGY 

The mathematical description of the proposed 
dynamic optimization problem (DOP) can be 
summarized as follows (Nowee et al., 2006): 
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Equation (5) indicates that the optimization 
(minimization) is performed considering the variable 
z(tf) as performance measure or objective function. 
Without any loss of generality, the objective function 
is simply the magnitude of a variable z(t) evaluated 
at the end of the optimization horizon t=tf . In 
addition, Equation (5) denotes the fact that the 
decision variables of the optimization problem are 
the time horizon tf (a scalar) and a subset of variables 
given by the vectors u and v. The former denotes 
control variables that are allowed to vary according 
to the functionality u(t) over the span of the time 
horizon t [0,tf] . The latter indicates parametric 
variables that are fixed at a value v. F and l simply 
denotes the set of differential-algebraic equations 
(DAEs) encompassing the fundamental process 
model and the set of additional equations (initial 
conditions) that must be satisfied at the beginning of 
the optimization horizon (in these equations, x and y
denote differential and algebraic variables 
respectively). In addition, we have lower and upper 
bounds on the decision variables, indicated by the 
superscripts min and max respectively. These 
constraints on the decision variables are stated 
explicitly since modern optimization algorithms can 
handle them very efficiently. This is not generally 
the case of other types of constraints. Then we have 
the end-point constraint variables, which usually 
represent certain conditions that the process system 
must satisfy at the end of the optimization horizon. 
For convenience, end-point constraints are divided 
into inequality and equality constraints. Although, 

the latter are a special case of the former, 
differentiating them simplifies the definition of some 
optimization problems. Also we include the interior-
point constraint variables, which are used to enforce 
process variables to lie within the defined upper and 
lower bounds at any other time but the end of the 
optimization horizon. By definition, these are 
inequality constraints. Finally, we have the inequality 
path constraints. The reader should be aware that 
state-of-the-art declarative languages such as 
gPROMS do not support the high-level declaration of 
these constraints. For instance, Vassiliadis et al. 
(1994b) suggested to incorporate path constraints 
into the problem formulation by defining an 
appropriate auxiliary relationship denoting the 
magnitude of the constraint violation and adding an 
appropriate terminal condition in the form of an end-
point constraint.  

In this particular application, ten control intervals 
were implemented and the time horizon and system 
decision variables are subject to the following 
bounds: 

Time horizon: 1800    tf 16000 s (6) 
Initial concentration: Ci 33.80 gr/100gr water    (7)
Ethanol federate: 0.375    F(t) 125ml/min  (8)

Subject to the following end-point constraints: 

Final total volume: 100  Vtotal 500 ml (9) 
Final yield: 0  Ytotal  20 %  (10)

Different size control related optimization objectives 
could be formulated as (1) keeping the 
supersaturation constant, (2) minimising nucleation, 
(3) maximising final mean size and (4) minimising 
the span of the size distribution. The results reported 
here correspond to maximization of final mean size 
for two cases, each with an additional end-point 
constraint specification in the final size range 
required: 

Case 1: 100 )( ftL 500 m (11)

Case 2: 80 )( ftL 100 m  (12) 

5. RESULTS AND DISCUSSION 

5.1 Kinetic Parameter Estimation

The parameter set  = [kb b kg E] is determined from 
running three experiments under three antisolvent 
feeding profiles. The profile of the first of these 
experiments shown in Fig. 2 was determined via 
dynamic optimization based on the Literature 
kinetics. The data from this experiment were used to 
re-estimate (refine) the kinetic parameter set . The 
new value of  was used in a subsequent dynamic 
optimization to determine a new optimal feeding 
profile (Figs. 3 & 4) which in turn was used in the 
other two experiments for further refining the value 
of . The results of the parameter estimation 
experiments are displayed in Figs 2-4 showing the 
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mean size profile of the refined kinetic model against 
the experimentally obtained mean size data. A 
satisfactory fit is obtained. The output from using the 
Literature kinetic model is also shown to show the 
level of refinement obtained. The final value of 
was estimated to be [7.339×105 1.76 824.7 
4.902×104]. 

5.2 Dynamic optimal antisolvent feeding policy 

Once the optimal kinetic model is attained, one can 
proceed to the subsequent step of model-based 
dynamic optimization. The idea that any final mean 
size could be obtained using the framework 
presented here was tested in two cases. In the first 
case, the objective function was to maximize the 
final mean size in an open range (Eq. 11). The 
dynamic optimization output is displayed in Fig. 5. 
The antisolvent feeding profile is shown to be slow 
initially and increased gradually in the middle of the 
batch. This corroborates with Nyvelt’s (1992) results 
and is explained as follows. A slow addition rate 
leads to lower nucleation levels initially, until the 
accumulation of sufficient surface area for crystal 
growth to become dominant. To demonstrate the 
capability of this model-based optimal approach, we 
tested it using a different objective in Case 2 that of 
achieving a final mean particle size of specific range 
(Eq. 12). The optimal feed profile, unlike that in 
Case 1, resulted in much higher initial rate of 
addition (Fig. 6). In fact, it was more than 145 times 
greater in the optimization interval. The mean 
dynamic optimal mean size profiles for Cases 1 and 
2 are presented in Figs. 7 and 8 respectively. We 
further validate these profiles experimentally and 
found very good agreements with the optimization 
(Figs 7 & 8). In Case 1 a final mean size of ~160 m
was achieved while in Case 2, the final mean size 
was at the upper bound of the specified (constrained) 
final size range.  

The model-based approach presented here allows 
systematic and rapid process development of optimal 
operation of antisolvent crystallization generic to be 
readily implemented for control of particle size of 
pharmaceuticals or fine chemicals compounds. 
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Fig. 2. Experiment 1 overlay plot of experimental 
mean size and model predictions using identified 
kinetics and those by Literature.   
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Fig. 3. Experiment 2 overlay plot of experimental 
mean size and model predictions using identified 
kinetics and those by Literature. 
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Fig. 4. Experiment 3 overlay plot of experimental 
mean size and model predictions using identified 
kinetics and those by Literature. 
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Fig. 5.  Case 1 dynamic optimal strategy.  
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Fig. 7. Experimental validation of mean size results 
from optimal trajectory of Case 1. 
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