
8th International IFAC Symposium on
Dynamics and Control of Process Systems

COMPUTER AIDED DESIGN OF PROCEDURAL PROCESS CONTROL SOFTWARE

Gregor Kandare and Stanko Strm nik

J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
E-mail: gregor.kandare@ijs.si

Abstract: In the paper a model-based automated approach to procedural process control
software is presented. A domain-specific modelling language specialised for analysis and
design of procedural process control software is described. A formal description of the
language syntax is necessary in order to define a mapping function from models to
programme code. Furthermore, a software modelling tool is described that supports
editing of software models and automatic source code generation for programmable logic
controllers as well as automatic documentation generation. Copyright © 2007 IFAC.

Keywords: Process control, Software specification, Software engineering, Programmable
logic controllers.

1. INTRODUCTION

Process control software is becoming ever more
complex and difficult to develop and maintain. The
reason lies in the very nature of control systems,
which are designed to control machines, devices and
processes. If the software is not appropriate, those
machines, devices, processes, etc. can go out of
control and can cause big material damage or even
ecological disasters. Reliability, safety and real-time
reactions are therefore among the most important
attributes of this kind of software (Frey and Litz,
2000).

A further issue is complexity of control software
systems. In order to cope with complexity and ensure
software quality, a systematic approach to the
software development has to be undertaken. In the
field of business software development, a software
engineering approach with the use of modelling
languages and tools has successfully been used for
several years and software engineering has developed
to a mature technical discipline (DeMarco, 1978;
Wieringa, 1998; Booch, et al., 1999; Ludewig, 2003).
In the process control software projects, the
development of software in many cases still begins
with programming, without previous modelling. The
problem is that the programming languages for
process control devices such as programmable logic
controllers (Lewis, 1998) do not reach an adequate
level of abstraction and are therefore unsuitable for
very complex systems. However, some reports of the

use of software engineering methods in process
control software development can also be found in
the literature (Davidson, et al., 1998; Edan and
Pliskin, 2001). Nevertheless, a shortfall exists in the
offer of computer automated software engineering
tools (CASE) for process control software
development, especially tools that automatically
generate source code for process control devices.

The paper is organised as follows. In the next section,
the ProcGraph modelling language is presented. In
the paper only a short definition of ProcGraph syntax
is given. A detailed description of formal syntax as
well as semantics can be found in (Kandare, 2004).
Afterwards, the description of mapping procedure of
models into source code is given. In the subsequent
section, a software modelling tool that enables model
building and automatic code as well as
documentation generation is presented. After that, an
example of application of the modelling tool in
development of software for an industrial process
control system is described. Finally, some
conclusions are drawn.

2. THE PROCGRAPH MODELLING LANGUAGE

ProcGraph is a specialized modelling language for
the design of procedural process control software
(Kandare, 2004; Godena, 2004). The advantage of
ProcGraph lies in its use of the same abstractions for
the description of the control system as the process

Preprints Vol.2, June 6-8, 2007, Cancún, Mexico

171

engineer uses for the description of the process,
which corresponds to subject domain-oriented
decomposition (Wieringa, 1998). In doing so, and
with the use of an appropriate target programming
language, seamlessness of the software development
process can be achieved. Seamless transition between
the development phases means that less effort is
needed for the transitions – the cognitive distance is
smaller (Krueger, 1992). Seamlessness has many
benefits, one of which is that communication
between the specialists in the software development
process (process engineers, system modellers and
programmers) is simplified, because they are
communicating in the same terms. Furthermore,
reverse transitions between software development
phases are easier. It is well known that the software
development process is not a linear and irreversible
one. It often occurs that a change made in a certain
development phase requires modifications in
preceding phases as well. If, for example, something
is changed in the program code, the model has to be
readapted too. This is simplified by using the same
abstractions throughout all development phases.

The ProcGraph modelling language encompasses the
following types of diagrams:

Procedural control entities diagram (PCED)
depicts the concurrent and at the same time
the conceptual decomposition of the system
as well as relationships between conceptual
components.
State transition diagram (STD) describes
the dynamic view (behaviour) of conceptual
components – procedural control entities.
Entity dependency diagram (EDD) portrays
causal and conditional dependencies
between conceptual components (procedural
control entities).

2.1 Procedural control entities diagram - PCED

Procedural control entities diagram depicts the
concurrent procedures of the control system. At the
same time, this represents an architectural
decomposition of the control software. Nodes of the
PCED represent conceptual components – procedural
control modules. Vertices in the PCED portray
relationships (dependencies) between the procedural
control entities. An example of a procedural control

entities diagram is shown in Fig. 1.

Name
Node

Type
Connection

1

1..*

Fig. 2. Syntax of procedural control entities diagram.

Syntax model of procedural control entities diagram
(<PCED>) is shown in Fig. 2. Full arrows illustrate
that a certain state transition of the arrow sink entity
depends on a certain state of the arrow source entity
(conditional dependency). Dashed arrows indicate
that entering of an arrow source entity into a certain
state fires a certain state transition of the arrow sink
entity (causal dependency).

From the syntax description it can be seen that each
node has a name and can be connected to one or
more other nodes. Each connection has a type (full or
dashed).

The syntax can also be defined using the following
six-tuplet:

<PCED> = {VE, PE, , iz, po, tp} (1)

where VE is a set of nodes, PE a set of connections,
a function that maps the nodes to corresponding state
transition diagrams, iz a function that returns the
source node of a connection, po a function that
returns the sink node of a connection and tp a
function defining the type of connection. A
comprehensive formal model of ProcGraph syntax
and semantics is described in (Kandare, 2004)

2.2 State transition diagram - STD

Procedural control systems produce real-time
reactions to output stimuli, therefore they can be
characterised as reactive systems. The most
appropriate model for describing the behaviour of
such systems is the state transition diagram (Harel,
1987). Fig. 3 shows a sample state transition diagram
representing the dynamics of procedural control
entity PCE 3 from Fig. 1.
Syntax of state transition diagrams (<STD>) is
depicted in Fig. 4. Each node representing a state can

Operating

Stopped

FastStop

[Condition1]

OK OK

Stopping

UO: Run[Cond0]/Act0

UO:StopRunning

Fig. 3. A sample state transition diagram.

PCE 1

PCE 3

PCE 2

Fig. 1. Procedural control entities diagram of a
procedural control system.

172

be connected to one or more other nodes with
connections representing state transitions. Each
connection is adorned with a description of the event
that fires the transition, the condition which has to be
fulfilled and the action that is executed when the
transition fires. Furthermore, nodes can contain other
nodes, thus building a state hierarchy.

Another way of defining the STD syntax is by using
the expression

STD = {VS, PS, iz, po, nad, I, P, O, } (2)

VS is a set of nodes representing the states, PS a set of
connections depicting the transitions, iz a function
that returns the source node of a connection, po a
function that returns the sink node of a connection,
nad the function that returns a supernode of a node, I
a set of input signal descriptions, P a set of parameter
descriptions, O a set of descriptions of output signals
and a function that attributes a logical expression to
each transition from the set PS. Input and output
signal descriptions are used in logical expressions
that define transition event and condition, as well as
the actions executed when a corresponding transition
is activated.

2.3 Entity dependency diagram (EDD)

Entity dependency diagrams contain state transition
diagrams of two or more procedural control entities
and the dependencies (relations) between the state
transition diagrams. While the procedural control
entities diagram shows only the existence of
dependencies between entities, the entity dependency
diagram also specifies the sources and sinks of
relationships in more detail. A conditional
relationship is represented by a full arrow, while a
causal relationship is indicated by a dashed arrow.

Fig. 5 shows an EDD depicting state transition
diagrams and dependencies of procedural control
entities PCE 3 and PCE 1.

Connection
Node

Name
Enter actions
Internal actions
Exit actions

1

*

1

1..*

1

*

Relation
Type

Fig. 6. Syntax of entity dependency diagrams.

event
condition
action

Connection

Name
Enter actions
Internal actions
Exit actions

Node

1

*1

1..*

Fig. 4. Syntax of state transition diagrams.

Fig. 6 shows the syntax model of entity dependency
diagram syntax. The syntax is similar to the syntax of
state transition diagrams. The difference is that in
addition to connections between nodes there also
exist connections (representing dependencies) that
originate in nodes and sink in connections.

The expression

EDD = {VS, PS, Q, iz, po, izp, pop, nad} (3)

also describes the syntax of entity dependency
diagrams. Compared to the expression (2), the
expression (3) contains a set of conditional
relationship connections (Q) and functions izp and
pop that return the connection source node and sink
transition connection, respectively. On the other
hand, EDD does not contain the information about
transition events, conditions and actions as this
information is already included in the STD.

3. MAPPING OF PROCGRAPH MODELS TO
SOURCE CODE

In the software development process, the modelling
phase is followed by the programming (coding)
phase. It is preferable to have similar abstractions and
maintain their hierarchy throughout the whole
development process. ProcGraph is designed to
reflect the abstractions of the problem domain. In this
article the focus is put on programmable logic
controllers as the implementation devices for
procedural process control. The destination language
therefore has to be one of the PLC programming
languages. Considering the seamlessness issue, the
most appropriate language for this purpose seems to
be the Function block diagram (FBD), which uses
function blocks as language constructs that are
similar to the main ProcGraph elements such as
procedural control entities and states. Furthermore,
FBD allows hierarchical decomposition of programs
(the body of a function block can contain code
composed of other function blocks). Thus, the
hierarchy of the ProcGraph models can remain
preserved in the FBD code. To transform ProcGraph

Operating

Stopped

Running Stopping

FastStop

Stopped

Running

Fig. 5. A sample entity dependency diagram.

173

4. A SOFTWARE MODELLING TOOL

models into source code, exact mapping rules based
on the ProcGraph and programming language syntax
and semantics have to be defined.

CGEnt1 Ent2

Fig. 7. Mapping of procedural control entities.

A software modelling tool has been developed in
order to support the software development process.
The main functions of the modelling tool are to
provide a graphical editor for ProcGraph models, to
automatically generate function block diagram code
and documentation from the model. Fig. 9 shows a
schematic representation of the modelling tool.

Modeling
tool

FBD code

Document

ProcGraph
model

Parameters

ProcGraph modelling language consists of three
different types of diagrams, which can be described
with the following expression:

<ProcGraph> = <PCED> + <STD> + <EDD> (4)
Fig. 9. Inputs and outputs of the modelling tool.

The mapping function of ProcGraph models into
Function block diagram language can be written as
follows:

One of the most important functionalities of the tool
is automatic generation of function block diagram
code from ProcGraph models. In generating program
code in a graphical programming language such as
FBD, the generator has to create not only the correct
content but also the right form (graphical image) of
the code, which is more difficult than generation of
code in textual programming languages such as C or
Java. For example, if a simple program scheme
consists of some blocks and connections between
them, it is not sufficient to describe the blocks and
connections. An exact placement of blocks and
routing of connections in the program scheme have to
be portrayed as well.

CG: <ProcGraph> <FBD> (5)

Each node of procedural control entities diagram is
mapped to its corresponding function block (Fig. 7).

The procedural control entities have corresponding
state transition diagrams describing their dynamics.
Therefore the body of each function block,
representing an entity in the code, contains an
algorithm implementing the state transition diagram.
The algorithm is yet another piece of FBD code,
where states are represented with function blocks. A
snippet of code representing the state transition
diagram in Fig. 3 is shown in Fig. 8.

The code generation process is illustrated in Fig. 10.
Firstly, the user creates and edits the ProcGraph
model with the help of a graphical editor. When the
model is completed, code generation can be
activated. The resulting product of the code
generation process is FBD source code, which has to
be compiled to executable code using an appropriate
compiler. Finally, the executable code can be
uploaded to the programmable logic controller.

The state transition mechanism together with the
state actions are implemented within the bodies of
function blocks representing the states. Furthermore,
the function blocks representing substates have to be
called within the body of the corresponding
superstate thus maintaining the hierarchy of the
model.

Compared to manual mapping of models to code,
automatic code generation is considerably faster.
Furthermore, manual coding introduces a number of
errors which do not occur in automatic mapping.

Fig. 8. Mapping of state transition diagrams.

Executable
code

IEC 1131-3
compilerModel editor

PLC

Code
Generator

FBD source
codeModel

Fig. 10. Code generation process.

174

Fig. 11. Ore grinding process.

5. EXAMPLE OF APLICATION OF THE
MODELLING TOOL

To demonstrate the use of the modelling tool
described in the previous section, a control system of
an ore grinding process shown in Fig. 11 is
employed. The process is divided by the plant
engineers into five subprocesses: Dosing, Grinding,
Pneumatic transport, Dust separation and Silo
transport. From the storage silo, the ore is poured
onto a belt scale. From the belt scale, the ore is
transported by a conveyor belt to the elevator and
from there to a vibration sieve. The sieved ore falls
through a funnel and a damper system into the
grinding mill. In the rotating mill, the ore is ground.
The ore then travels to the separator, where any
unground ore is separated and fed back into the mill
by a conveyor belt system. The ground ore is
transported to a cyclone air separator, where fine
particles are extracted and transported by a conveyor
belt system to the corresponding storage silo. The
excessive air in the pneumatic transporting system is
then led to a bag filter.

According to the principles of subject-domain
oriented decomposition, the main architectural
modules (procedural control entities) of the control
system are chosen in such a manner that they reflect
the decomposition of the controlled process.

Fig. 12 shows a screenshot of the main window of
the modelling tool with the procedural control
entities editor containing the five procedural control
entities and relationships between them. Each
procedural control entity has a corresponding state
transition diagram, describing the entity’s dynamics.
If the user clicks on the corresponding procedural

control entity in the PCED editor, the state transition
diagram editor window opens (Fig. 13). Once the
complete model is built, automatic code generation
can be started. Fig. 13 shows a state transition
diagram in the modelling tool and the resulting FBD
code that implements it. The resulting code was
created automatically by the tool. Fig. 13 shows that
on the highest level of code hierarchy there exist five
function blocks, which correspond to procedural
control entities of the model. Furthermore, the
procedural control entities correspond to the
decomposition of the controlled process. Hierarchy
and granulation of the controlled process remain
preserved in the code – the same abstractions the
process engineers use for description of the
controlled process are implemented in the PLC code.
Seamlessness of the software design process is thus
achieved.

Fig. 12. Screenshot of the PCED editor.

175

Fig. 13. Screenshot of the STD editor and generated FBD code.

.
CONCLUSIONS

Control software development for programmable
logic controllers has become a demanding task due to
the ever-increasing complexity of controlled
processes and also due to the low abstraction level of
PLC programming languages. The programming
process is time-consuming as well as extremely
error-prone and consequently consumes a great deal
of manpower resources. In this article it is shown that
the rules of the model-to-program code conversion
can be precisely defined and hence automated. This
can be done by implementing a domain-specific code
generator (synthesizer). The code generator uses code
patterns, which also contributes to the standardization
and reusability of the generated code. In the code
generation process, the appropriate patterns are used
and filled with the corresponding content.

Automatic code generation significantly reduces the
duration of software development process and at the
same time improves the quality of the product-
procedural control software.

Modern control applications very often consist of
distributed control systems. For that reason, our
future work will be focused on modelling and code
generation for such systems, following the guidelines
of the IEC 61499 standard.

ACKNOWLEDGMENT

The financial support by the Ministry of Education,
Science and Sport of the Republic of Slovenia are
gratefully acknowledged.

REFERENCES

Booch G., J. Rumbaugh and I. Jacobson (1999). The
Unified Modeling Language User Guide,
Addison Wesley, Boston.

Davidson, C. M., J. McWhinnie and M. Mannion
(1998). Introducing Object Oriented Methods to
PLC Software Design, Proc. International
Conference and Workshop: Engineering of
Computer-Based Systems (ECBS '98),
Jerusalem.

DeMarco, T. (1978). Structured Analysis and System
Specification. Prentice Hall, Englewood Cliffs.

Edan, Y. and N. Pliskin (2001). Transfer of Software
engineering Tools from Information Systems to
Production Systems. Computers & Industrial
Engineering, 39(1), 19-34.

Frey, G. and L. Litz (2000). Formal methods in PLC
programming, Proc. IEEE Conference on
Systems Man and Cybernetics SMC 2000,
Nashville.

Godena, G. (2004). ProcGraph: a procedure-oriented
graphical notation for process-control software
specification. Control Engineering Practice,
12(1), 99-111.

Harel, D. (1987). Statecharts: A Visual Formalism
for Complex Charts. Science of Computer
Programming, 8(3), 231-274.

Kandare, G. (2004). Computer aided design of
procedural control software for programmable
logic controllers. PhD Thesis, University of
Ljubljana.

Krueger, C. W. (1992). Software reuse. ACM
Computing Surveys, 24(2), 131-184.

Lewis, R.W. (1998). Programming industrial control
systems using IEC 1131-3. The Institution of
Electrical Engineers, London.

Ludewig, J. (2003). Models in Software Engineering
– an Introduction. Software and Systems
Modeling, 2(1), 5-14.

Wieringa, R. (1998). A Survey of Structured and
Object-Oriented Software Specification
Methods and Techniques, ACM Computing
Surveys, 30(4), 459-527.

176

