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1. INTRODUCTION

For maximizing the production of an oil reservoir,
improved modelling of the oil reservoir is impor-
tant. Modelling of the oil reservoir is a difficult
task, and obviously there is a problem with iden-
tification as the available observations are limited
and the model is large. Today reservoir models
that describe the fluid flow in the oil reservoir are
used for decision support by evaluating different
future prediction scenarios. One could for instance
evaluate the effect of drilling a new well at a
certain location, or evaluate different strategies for
flooding the reservoir.

In the future, one envisions that oil production
will be improved by introduction of methodolo-
gies from other industries, as process control, see
e.g. (Jansen et al., 2005). One interesting method-
ology that can be used for this purpose is closed-
loop control. This will require online system iden-
tification. The Kalman filter is a likely choice for
solving the system identification problem, but one
has to take into account that the oil reservoirs

are modelled using a large-scale non-linear system.
Moreover, modelling of oil reservoir is a very com-
plicated task due to the fact that the knowledge
of important properties of the reservoir is very
limited. For instance, important model parame-
ters as permeability and porosity are not known.
To acknowledge for this fact, the model must
be improved from the available measurements by
updating these model parameters.

The ensemble Kalman filter (EnKF) has shown
to be a promising alternative for large-scale non-
linear models. The EnKF was introduced for state
and parameter estimation of reservoir models in a
smart-well setting (Nævdal et al., 2002). The use
of this technique has subsequently attracted a lot
of attention within petroleum sciences. However,
there are only a very modest number of smart
wells drilled yet. Therefore most of the research
on using EnKF for updating reservoir models has
focused on estimating certain parameters (per-
meability and porosity) in the reservoir model
and not on providing an updated model in real-
time. Here we present the EnKF as a tool for
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updating reservoir simulation models, and show
some results from a recent study.

A demonstration of the potential using “smart-
wells” (wells equipped with increased possibili-
ties of measuring and control) combined with the
EnKF and optimal control for improved oil re-
covery is presented in (Nævdal et al., 2006), by
showing its performance in a synthetic study. The
current paper demonstrates the feasibility of the
EnKF part, demonstrating that it does indeed
improve the reservoir models when it is applied
on a real data set.

The EnKF was introduced (Evensen, 1994) as
an alternative to the extended Kalman filter for
solving the problems encountered with large-scale
non-linear models. The EnKF has been applied in
many large-scale applications, in particular within
earth sciences (Evensen, 2003), but the applica-
tions within control theory are scarce. Within
the control sciences, other alternatives to the ex-
tended Kalman filter have been introduced for
solving the challenges posed by non-linear models,
as the unscented Kalman filter (UKF) (Julier and
Uhlmann, 1995) and other related filters.While
introducing the EnKF in this context, it is natural
to compare the ideas behind the EnKF with the
UKF.

The paper is organized as follows: first we intro-
duce the EnKF. Thereafter we discuss reservoir
modeling in more details, including the use of
EnKF for state estimation of the reservoir model.
Finally, we illustrate this practise by showing
some results from a recent study.

2. THE ENSEMBLE KALMAN FILTER

As pointed out in the introduction, the extended
Kalman filter faces difficulties if the non-linearity
of the model becomes to severe. For instance the
assumption on local linearity may fail. The ex-
tended Kalman filter also requires partial deriva-
tives of all the state variables, and in some cases
these may be difficult to obtain. For large-scale
systems the storage of the covariance matrix for
the state may also cause problems.

The EnKF is a Monte Carlo approach, where a
set of sampling points is used to estimate the
statistics of the estimated state of the model.
In the presentation of the EnKF we start with
a simple non-linear model, and will then point
out certain modifications needed to cover the
specifications of our problem afterwards. These
modifications do not change anything essential in
the filter equations.

Consider the non-linear model, f , which prop-
agates the state x from time k − 1 to time k
according to

xk = f(xk−1) + wk, (1)

where wk represent process noise assumed to fol-
low a normal distribution with mean zero and co-
variance matrix Q, wk ∼ N(O, Q). The subscripts
denote the timesteps.

At time k an observation is available, and it is
related to the state according to

zk = Hxk + vk, (2)

where H is the observation matrix and v ∼

N(0, R) is the measurement noise.

As is well known, the Kalman filter provides the
estimated mean x̂k and error covariance matrix,
Pk, of the state at time k. For the EnKF, an
approximation of the error statistics are available
in form of an ensemble of realizations of the states
of the model

[xk,1 xk,2 . . . xk,N ] , (3)

where N is the number of ensemble members. This
means that the mean x̂k and covariance matrix Pk

of the state can be approximated at a certain time
step by

x̂k ≈
1

N

N
∑

i=1

xk,i,

Pk ≈
1

N − 1

N
∑

i=1

(xk,i − x̂k)(xk,i − x̂k)T .

(4)

The initialization of the EnKF is done by drawing
a set of ensemble members from the distribution
that represents the initial belief of the value of
the state at time zero. The initial state is most
commonly drawn from a normal distribution.

The EnKF is now evolving, as the Kalman filter,
with a prediction step and an update step. In the
prediction step the model is evaluated for each
ensemble member by

xf
k,i = f(xa

k−1,i) + wk,i

wk,i ∼ N(0, Q),
(5)

where the superscript f denotes the quantities
computed after the prediction step, and a the
quantities after the update step and subscript
i denotes the ensemble member. In the update
step the states are adjusted to take into account
an observation zk assumed to have measurement
noise following a normal distribution with mean
zero and covariance matrix R. The equations for
the update step are computed as follows:

Kk = P f
k HT (HP f

k HT + R)−1,
zk,i = zk + vk,i,
vk,i ∼ N(0, R),

xa
k,i = xf

k,i + Kk(zk,i − Hxf
k,i)),

(6)
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where Pk is defined as in Eq. 4. The Kalman gain
Kk must be computed with care to reduce inter-
nal storage requirements during the computation.
The similarity with the Kalman filter is obvious,
but note that in the EnKF one avoids the com-
putation both of the apriori and the aposteriori
covariance matrices.

More details about the EnKF, with references
to different variations in the implementation
and applications and discussions about its the-
oretical and numerical properties, can be found
in (Evensen, 2003; Evensen, 2006).

In the above model description (Eq. 1 and 2)
a linear relationship between the state and the
observed quantities was assumed. For the reservoir
model that we will discuss later, this assumption
does not hold. To be able to use the EnKF in this
setting, we extend the state vector to include the
observed quantities (that do not depend linearly
on the states). We denote these quantities at step
k by dk. This construction allows us to consider
cases when the observations are related to the
state vector through a non-linear function as dk =
h(xk) for an arbitrary function h.

The derivation of the EnKF presented above con-
siders the most common application where only
the state of the model is modified in the update
step. In petroleum science many of the models
have poorly known model parameters. To improve
the predictions it is necessary to tune these model
parameters. This can be done using augmentation
of the state variable. This idea is well known for
the extended Kalman filter. Let pk denote the
parameters that are modified in the update step,
where the index k refers to the parameter values
obtained at time step k.

Now we introduce an extended state vector that
combines both the additional observed quantities,
dk, and the parameters, pk. The extended state
becomes

x̃k =





xk

dk

pk



 .

We can now replace the ensemble of realizations
of the states of the model with an ensemble of
extended states. If we further ignore the process
noise, as we will do while working with the reser-
voir model, then the prediction step (5) can be
written as

[

xf
k,i

df
k,i

]

= f(xa
k−1,i, p

a
k−1,i),

pf
k,i = pa

k−1,i

The update step (6) is computed as before, but
now on the ensemble of extended states. Further,

H is replaced in an obvious manner by an ex-
tended matrix H̃ = [0 I 0]. This means that
both the states xk and the parameters pk are
updated based on how they are correlated to the
measurements zk = dk.

Let us now relate the EnKF to the UKF. The
UKF was introduced to meet the challenges posed
by the non-linearity of the model, and was first
introduced in (Julier and Uhlmann, 1995). The
basic idea behind the UKF is to get a better
approximation of the covariance matrix of the
state after the prediction step. The prediction step
of the EnKF and of the UKF are quite similar,
although the stochastic component of Eq. 5 is
replaced by using sample points for the UKF.
The ensemble members are, however, obtained
differently. For the UKF, a set of sample points
that represent the uncertainty in state estimate
provided by the aposteriori mean and covariance
matrix P a

k is generated. They are selected such
that they reproduce the mean, x̂a

k, and covariance
matrix, P a

k , exactly. To achieve this, one needs
2n + 1 ensemble members, where n is the number
of states, i.e. the length of the vector x. For large-
systems, such a construction becomes infeasible.

The update step of the EnKF and UKF is differ-
ent. As shown above, in the EnKF the Kalman
gain is applied on each ensemble member individ-
ually. In the UKF, the Kalman gain is used to
compute the updated mean and covariance ma-
trix, and thereafter a new set of sampling points
(corresponding to the ensemble members) are gen-
erated. This means that the UKF is based on com-
puting the first and second order moments (mean
and covariance matrix) to describe the probability
distribution of the state vector both in the update
and prediction step. This is relaxed in the EnKF
since the mean and the covariances are only used
to compute the Kalman gain, but all the ensem-
ble members are treated individually both in the
prediction and the update step. Previously, many
studies have compared either EnKF or UKF with
the extended Kalman filter. As far as we know
very few studies compare UKF and EnKF, with
(Nygaard et al., 2006) as one exception, where the
performance was compared on a small size model.
Such comparisons are probably most interesting
on medium size problems, where the number of
simulations for the two approaches will be of the
same order.

3. RESERVOIR MODELS AND UPDATING
THEM USING ENSEMBLE KALMAN FILTER

As pointed out in the previous section, the type of
models we can consider with the EnKF is of a very
general type. Here, we discuss the application of
the EnKF on reservoir models. For readers with-
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out background in this area, we give a first simpli-
fied exposition of the modelling behind fluid flow
in oil reservoirs. For our practical implementation,
we have used a commercial reservoir simulator,
that may be viewed as a black-box model in the
extreme, fulfilling the structure of Eq. 1.

One common approach of modelling fluid flow
in an oil reservoir is to build a model based on
Darcy’s law, mass conservation, the petrophysical
behavior of the system and certain empirical rela-
tions (as relative permeability, capillary pressure,
etc.). The boundary conditions are given by the
wellflow model.

Darcys’s law

up = −
kkrp

µp

(∇pp − γp∇z)

gives a relationship between flow rate up and
pressure gradient ∇pp for each phase (denoted by
subscript p). In our case, we consider a three phase
system, with the phases oil, o, gas, g and water, w.
In the above equation, k denotes the permeability,
krp the relative permeability, µp the viscosity, z
the depth and γp = ρpg, where ρp is the density
of phase p and g the gravitational constant.

Combining Darcy’s law with the mass conserva-
tion law for each phase, for a three phase black-oil
system, yields the equations that should be solved
by the reservoir simulator. To simplify the expo-
sition, we present the equations for a two phase
system with oil and water. Further, we also ignore
the gravity terms. For details about modelling of
reservoir flow, the reader could consult (Aziz and
Settari, 1979).

The equations that need to be solved for a two-
phase system without gravity effects are

∇ ·

(

kro

µoBo

k∇po

)

=
∂

∂t

(

ΦSo

Bo

)

+ qo (7)

and

∇ ·

(

krw

µwBw

k∇pw

)

=
∂

∂t

(

ΦSw

Bw

)

+ qw. (8)

Here Φ denotes the porosity, Sp the saturation
of phase p, Bp is the formation factor of phase
p, and qp the inflow or production of each phase.
The terms qp are further modelled using a wellflow
model, which we will not go into any details
about. Both the porosity Φ and permeability k
are functions of space.

To get a closed system of equations we add a
closure relation for the saturation

So + Sw = 1

and one by the capillary pressure between oil and
water

Pcow = po − pw = f(Sw, So).

The model is then discretized, and the system
typically solved by a finite difference approach.

The modelling of an oil reservoir is a complex
task where one needs to combine information from
many sources. The largest structures of the reser-
voir are modelled using information from seismic
surveys. After drilling exploration wells further
information can be obtained by different tests
taken during drilling. The petrophysical proper-
ties of the fluids in the reservoir, as the relative
permeabilities and capillary pressures, can be de-
termined using core samples from the reservoir.
The core samples may also be used for determi-
nation of the permeability and porosity at these
locations. Pressure tests will also be available. Still
there will be lots of uncertainties in the model.

After the production is started from the reservoir,
production data become available, and these can
be used for further tuning of the model. Among
the quantities that have large influence on the
flow are porosity, Φ, and permeability, k, and it
is natural to use the production data to get a
better description of them. The spatial variability
of the porosity Φ and permeability k, are typically
assumed to vary randomly, and are described
using geostatistical methods (Chilès and Delfiner,
1999).

The use of EnKF for updating reservoir models
according to the information from production
data has been a topic for extensive research during
the past years. Some recent papers include (Gu
and Oliver, 2006; Haugen et al., 2006).

4. AN EXAMPLE

In this section we present some results from a
recent study. A reservoir simulation model is built
based on seismic and prior geological knowledge
of the depositional effects. The simulation model
is based on a grid of size 156 × 77 × 10. Many
of the grid blocks are inactive (to represent the
complex geometrical layout of the reservoir), such
that the total number of active grid cells is 25, 669.
Each grid cell has a horizontal size of 125 × 125
meter. The height of each grid cell is chosen to
produce layers containing the same type of geo-
logical structure. On the average, the height of the
cells is three feet. The horizontal layers consist of
sand and sandstones. Although they may have the
same type of geological properties, a lot of spatial
variability in porosity and permeability remains.
The original model has seven different geological
layers, but for better numerical modelling three
of them are splitted thereby giving ten horizontal
layers in the simulation model.
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Prior to production, 10 appraisal wells have been
drilled. These wells provided information about
initial saturations and pressures in the reservoir.
From the appraisal wells core samples have been
obtained and analyzed. These core samples pro-
vided information about the porosity in certain
points of the reservoir and also the petrophysical
parameters of the oil reservoir.

The key uncertainty in the model is believed
to be the porosity and permeability. Using the
EnKF, we update the porosity by including it
as the vector pk in the extended state vector x̃.
The porosity is varying in the reservoir, and pk

is a vector of length 25, 669, each representing
the porosity in one grid block of the reservoir.
The permeability is updated using a deterministic
relationship with porosity, i.e. k = f(φ). This
means that an update porosity values also leads
to updated permeability values. In other studies,
stochastic relationships between the permeability
and porosity have been used (see (Haugen et
al., 2006)). Then the permeability values will be
included in the state vector together with the
porosity values.

The initial ensemble was generated by assuming
an initial probability distribution of the porosity
values. The mean and uncertainty in the porosity
were computed for each layer using the available
data from the appraisal wells. The distribution
was further conditioned to fit the observed porosi-
ties in the appraisal wells. Such a conditioning
was not done in the previous study (Haugen et
al., 2006). The porosity values for different grid
cells are further assumed to be correlated us-
ing a variogram structure with horizontal range
4000 meter. This means that the porosity values
in grid blocks close to each other are strongly
correlated. The correlation is decreasing as the
distance between the grid blocks increases, and
are zero for grid blocks that have a distance of
4000 meters. The initial ensemble is generated
by drawing 100 ensemble members independently
from the described probability distribution.

The dynamic variables updated using the EnKF
are the pressure, the water and gas saturations
and the solution gas-oil ratio. The initial condi-
tions for the dynamic variables are computed from
gas-oil and water-oil contacts, that we assume to
know exactly. Monthly production data are avail-
able from two production wells for three years.
We are measuring oil production rate, water cut
(fraction of water produced by the well), and gas-
oil-ratio (GOR). This leads to a model with a state
vector of length 128, 350. The well flow is modelled
using fixed oil production rate which means that
this is considered as a boundary condition of the
model, and is not useful as a measurement.
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WGORH A1 100

Fig. 1. GOR at well A1. The red dashed lines
are predictions done based on the initial en-
semble. The blue lines are the simulations
using the updated porosity and permeability
values obtained after assimilation of the pro-
duction data. The black bullets are the mea-
surements. The unit of the x-axis is months,
of the y-axis is MScf/STB.
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Fig. 2. GOR at well A2. The same notation as in
Fig. 1.

As there are many sources of possible errors in ob-
taining the measurements, engineering judgement
is used to assign the measurement noise used in
the filter. This also means that while evaluating
the results, one is mostly looking for a correct
qualitatively behavior of the model after applying
the EnKF.

For the GOR measurements, the uncertainty used
for well A1 was 0.4 MScf/STB for GOR values
larger than 6, 0.2 MScf/STB for lower values. For
well A2 the uncertainty was 0.6 MScf/STB except
for the last five measurements. The last five GOR
measurements for well A2 were considered very
unreliable, and an uncertainty of 600% was used.
For the water cut measurements the uncertainty
used for well A1 was 0.05, except for five measure-
ments that were considered very unreliable and
given an uncertainty of 600%. For well A2 the
uncertainty of the water cut measurements was
0.0025 for all the measurements. There was no
water breakthrough during the three year of pro-
duction, leaving the GOR as the most interesting
measurements.

The primary objective of this study is to verify
that the EnKF is working properly for this prob-
lem, and in particular that the estimated porosity
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values are reasonable. The usual way of verifying
reservoir models tuned to production data, is to
show that they, in the end, have a reasonable
match to the data. Here, we present the predicted
values obtained from the 100 initial porosity fields.

As the observed GOR for the two wells are the
most interesting observations, we restrict our-
selves in providing results only for these two obser-
vations. The initial predictions, obtained by run-
ning the reservoir model from time zero through
three years without applying the EnKF are shown
in Figure 1 and 2. The porosity values (and
through them, the permeability values) were then
updated using monthly observations of water-cut
and GOR from the two production wells over
a three year period, using the EnKF with 100
ensemble members. This results in 100 updated
porosity fields. The quality of these updated fields
are evaluated by running simulations from time
zero using each of the updated fields, again with-
out applying the EnKF. The results are shown in
Figure 1 and 2. We immediately observe that the
variation in the simulated values are considerably
reduced. This is the major effect obtained for well
A2 (Fig. 2). For well A1 we also have achieved a
better match to the measurements, in particular
at later times. Moreover, the new simulations are
much more in agreement with the observed values.
This means that the new porosity fields are more
suitable for improved reservoir management and
better decision making.

A more thorough presentation of this study is
available in (Bianco, 2006), and will also be pre-
sented in (Bianco et al., 2007).

5. CONCLUSIONS

The EnKF is a promising method for updating
properties as porosity and permeability of large-
scale reservoir simulation models. The theory be-
hind the EnKF has been outlined and the similar-
ities and differences with another non-linear filter,
the UKF has been discussed.
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