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Abstract: In this paper, a new methodology to integrate process design and control for 
systems under uncertainty is proposed. Instead of using dynamic optimizations to 
estimate the system’s maximum variability, process stability and process constraints, this 
methodology applies a robust control approach to calculate bounds on these conditions. 
To illustrate the methodology the design of a mixing tank process is considered. 
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1. INTRODUCTION 

 
In the last decades, the necessity to integrate process 
design and control in one single step has been widely 
recognized; i.e., develop a feasibility, flexibility and 
controllability analysis of the process 
simultaneously. Due to its complexity, several 
methodologies had been reported to address this 
problem. One set of methodologies had made use of 
controllability measures combined with an economic 
index to assess the simultaneous design (e.g. Luyben 
and Floudas, 1994; Alhammadi and Romagnoli, 
2004). Most of these methods use steady state 
models or linear dynamic models to represent the 
systems behaviour; therefore, the application of these 
methods to highly nonlinear systems is limited by 
this fact. Also, the indices used to measure the closed 
loop performance do not directly represent an 
economic cost of the process variability. This is the 
major drawback for these methods. 
 
The most recent methodologies address this problem 
by using a single performance index objective 
function (e.g. Mohideen et al., 1996; Swartz, 2000; 
Kookos and Perkins, 2001; Chawankul et al., 2005).  
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Most of these methods use a rigorous nonlinear 
dynamic model of the system within a dynamic 
optimization problem to assess the system’s closed 
loop variability. Consequently, this calculation would 
require an intensive computational effort. Therefore, 
these methodologies can only be realistically applied 
to chemical processes with a small number of process 
units. A more comprehensive review of the current 
methodologies that address the integration of design 
and control problem can be found in Seferlis and 
Georgiadis (2004) and Sakizlis et al. (2004). 
 
This paper presents an approach to the integration of 
process design and control problem that does not 
require dynamic optimization. The proposed 
methodology uses robust control analysis tools to 
address the design of dynamic systems under 
uncertainty.  
 
 

2. METHODOLOGY 
 
The conceptual mathematical formulation followed 
to achieve the integration of design and control is 
explained in this section. 
 
 
2.1 Cost Function 
 
In the present work, the objective function is 
formulated as the combination of the steady state 
cost, i.e. the capital and operating costs, and a 
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variability cost, which is directly related to the 
dynamic performance of the system to be designed. 
This can be mathematically expressed as: 

 
 ( ) ( ) ( )ddd VCOPCC..O φφφ λ,u,d,u,d,u,d, ++=F  (1) 
 
Where the capital cost (CC), the operating cost (OP) 
and the variability cost (VC) are functions of the 
design variables (d), the manipulated variables to be 
used by the control strategy (u) and the process 
variability (φd), respectively. In addition, the 
variability cost function is also a function of the 
controller tuning parameters (λ). 
 
The capital and operating cost of a plant are 
generally estimated from cost correlations which 
depend on the design variables of the system. To 
assess the variability cost, it is necessary first to 
measure the process variability and assign a cost to 
it. The process variability function (φd) is specific for 
every process and depends on factors such as the 
goals to be attained by the design, the process inputs 
and outputs and the nature of the process itself. The 
allocation of a specific cost to the process variability 
function also depends on such factors. For example, 
if the goal is to design a system to keep the property 
of a product on target, then the cost is related to the 
deviations in this property with respect to the target. 
On the other hand, if the sole objective is to design a 
unit that can reject disturbances in an effective 
manner, then the variability cost may be associated 
with the unit’s capacity which has a direct impact on 
the capital cost.  
 
In the current work, to simplify the analysis, the 
perturbations that may affect the process are 
classified in two classes: i)-unmeasured disturbances 
(υ) defined as perturbations that vary rapidly in the 
time domain and ii)-unmeasured perturbations that 
change very infrequently in time to be referred 
heretofore as process parameter uncertainty (ω). This 
later type of perturbation is considered to remain at 
constant values for long periods of time. Thus the 
transients in ω are ignored in the analysis since they 
are expected to occur very infrequently during the 
plant’s normal operation. 
 
 
2.2 Process Model 
 
It is assumed in this work that a full nonlinear 
dynamic process model is available for simulations. 
Then, a key idea in the proposed approach is to use a 
robust control model approach to represent the full 
nonlinear model of the controlled plant. Thus, the 
plant’s closed-loop nonlinear dynamic model is 
described here as a nominal closed-loop linear state 
space model supplemented with model uncertainty. 
The set of uncertain values are defined as model 
parameter uncertainty (θ). These uncertain values 
capture the process nonlinearities due to the changes 
in the disturbance variables υ. This model is given as 
follows: 
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These models can be obtained from closed loop 
identification techniques, (Ljung, 1987).The input to 
this model is the disturbance (υ) that affects the 
process outputs (y). The closed loop model (2) 
describes the process response to changes in the input 
disturbance (υ) in a neighbourhood of a nominal 
operating condition, specified by the manipulated 
variables (u), the design variables (d), the process 
parameter uncertainty (ω) and the controller tuning 
parameters (λ). Using the uncertain model in (2), 
robust control tools can be applied to assess robust 
stability and to calculate bounds on variability. This 
approach is expected to reduce the computational 
time since dynamic optimization problems are 
avoided. Similar state space models can be also 
developed to represent the closed loop response in u 
with respect to changes in υ. Then, the calculated 
variability in u obtained with these models can be 
used to test constraints on manipulated variables. 
 
 
2.3 Process Stability 
 
Most of the methodologies proposed in the literature 
do not include a stability condition within their 
framework. To assure process asymptotic stability, 
this approach applies a robust stability criteria based 
on a quadratic Lyapunov function for linear time-
invariant systems (Boyd and Yang, 1989). This 
condition can be mathematically expressed as: 

 
  (3) 0<+ )(θ)(θ A

T
A PAPA

 
Where P is a symmetric positive definite matrix and 
A(θA) is the A state space matrix of the system 
shown in (2). Inequality (3) represents an infinite 
number of inequalities corresponding to all the 
possible values of the uncertain model parameters of 
the state matrix A. However, due to the convexity of 
the function in the LHS of (3) with respect to θ and 
P, it is possible to evaluate this expression by testing 
a finite number of Linear Matrix Inequalities (LMI’s) 
estimated at the combinations of the extreme values 
of θ as follows: 
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Where wk represents a particular combination of the 
uncertainty values identified for the A state space 
matrix. A sufficient condition for asymptotic stability 
in a linear time-invariant system is the existence of a 
matrix P such that P>0, P=PP

T, which satisfies the 
finite set of LMI’s presented in (4).  
 
 
2.4 Assessment of the Worst-Case Scenario 
 
A key problem for integrating design and control is 
the calculation of the critical time dependent 
disturbance that produces the largest variability in the 
system. This condition, referred to as the worst-case 
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scenario, is found by using a Structured Singular 
Value (SSV) test. The computation of the largest 
variability at the end of a batch process was 
calculated by Nagy and Braatz (2003) applying a 
Mixed Structured Singular Value approach. The 
current work expands upon that work by proposing a 
calculation of the variability for a continuous process 
over a predetermined time horizon. In principle, the 
calculation for continuous processes would require 
considering an infinite time horizon, but for practical 
applications it is sufficient to look at the output’s 
settling time, N. To evaluate the worst-case condition 
around a nominal operating point (u, d and λ) and at 
a specific value of the process parameter uncertainty 
(ω), the following impulse response model was used:  
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Where and iqh iqhδ  are the nominal and the uncertain 
values of the impulse response coefficients relating 
the output y to the input disturbance υ at time j and υ 
has dimension mx1. The impulse responses of model 
(2) are simulated for different combinations of the 
extreme values of the model parameter uncertainty 
θ’s and for each element υq of υ. From these 
simulations, upper and lower bounds of y are 
obtained for each time step (j) and for each element 
of υ. Accordingly, the values of  and  are 
calculated as follows: 
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where and  represent the upper and lower 
bounds of the output variable y at each time step (j) 
for each υ

up
iqh low

iqh

q  denotes a change in the 

disturbance variable υ

)( ijq −δυ

q  at time (j-i). The disturbance 
is assumed to be bounded between a priori known 
bounds. 
 
The goal is to find the critical time-dependent 
profiles in  that would drive the output variable to 
its maximum deviation, i.e.: 

δυ
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In principle, dynamic optimization could be used to 
find the exact worst perturbation by using the full 
nonlinear process model. Instead, a bound on the 
variability can be found by applying a Mixed 
Structured Singular Value analysis to the uncertain 
impulse response model given by (5). Following 
Nagy and Braatz (2003) the output values of y for a 
prediction horizon of N intervals may be bounded as 
follows:  
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Thus, the largest error of y at any time interval j 
along a time horizon of N intervals can then be found 

from the solution of a “skewed’ μ problem as 
follows: 
 

  (9) ( )
  max k

k≥MΔμ

 
Where the perturbation block Δ used in the μ 
calculation has a structured form as follows: 
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Where  and  are independent real scalar 
vectors of dimension m x 1 and (N*m) x 1, 
respectively; and δ

1
rΔ

2
rΔ

c is complex scalar vector of 
dimension N x 1.The interconnection matrix, M, 
used in (9) has the following structure: 
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Where: 
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In (17), (18) and (19), tij=k, otherwise 0. Thus, the 
last N rows of the matrix M in (10) corresponds to 
the different values of y(j) for . The 
solution to (9) provides the worst-disturbance vector 
that produces the largest variability in the output 
variable y as given by the bound k.  

Nj ≤≤0

 
The previous analysis specifies the worst-case 
condition in y based on the system (2), which in turn 
was generated around a nominal operating point and 
at a fixed value of the process parameter uncertainty 
ω. Then, one must search for the value in ω and the 
corresponding profile in δυ that produces the largest 
output error in y. The calculation is performed using 
closed-loop state space models, (2), each identified 
around a set of operating conditions defined by 
nominal values of u, the design variables d and 
tuning parameters λ. Thus, the calculation of the 
worst-case scenario is expressed as: 
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The optimization problem shown in (20) could be 
reduced to a single calculation if ω would be 
considered as a dynamic disturbance within the 
closed-loop state space model; that is, closed loop 
identification could be conducted where ω and υ are 
considered as inputs to system (2). This approach 
would consider the transients in ω  and would also 
eliminate the need for solving the optimization 
problem in (20), but it would potentially lead to a 
system with larger uncertainty and consequently to a 
more conservative design. Solving (20) requires the 
identification of a system like (2) for every ω tested. 
However, the identification process is simple and the 
identified models are expected to have small model 
uncertainty since the process is identified in closed 
loop. Based on the knowledge of the worst-case 
variability in each of the output variables, a cost can 
be assigned to quantify the actual economic impact 
of the variability in (1). 
 
 
2.5 Process Feasibility 
 
Process feasibility requires that the manipulated 
variables u, must remain within the specified bounds 
for all possible profiles values υ and ω. The 
maximum values in u can be calculated by using the 
same methodology applied to calculate the worst 
output variability by using μ. To evaluate this 
condition, (9) and (20) can be rearranged as follows: 
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where u  represents a steady state value of the 
manipulated variable, and Mu is the interconnection 
matrix with respect to this variable; thus, inequality 
(21) requires the identification of a robust model as 
given in (2) from the disturbance υ to the 
manipulated variable u. 
 

 
2.6 Optimization Problem 
 
The formulations in (1), (4), (20) and (21) can be 
combined into one optimization problem as follows: 
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This problem corresponds to a constrained nonlinear 
optimization problem. It should be noted that the 
process flow sheet, the control structure and pairing 
between the manipulated variables and the controlled 
variables are assumed a priori. Thus, control 
structure selection and the process synthesis problem 
are not explicitly considered in this work. 
 
The proposed strategy involves the following steps: 
 
Step 0 (Initialization): Initial values for the process 
manipulated variables (u), the controller tuning 
parameters (λ), the disturbance variables (υ), and the 
process parameter uncertainty (ω) are specified. 
 
At iteration k: 
 
Generate a state space model with model 
uncertainty: Closed loop state space models 
representing the response of y and u with respect to 
changes in υ as given in (2), with a corresponding 
uncertainty description, are identified. Pseudo 
random binary signals (PRBS) are designed using the 
upper and lower bounds specified for the disturbance 
variables υ. The model is obtained from the 
simulation of the process closed loop dynamic model 
around a nominal operating condition defined by the 
values of λ, u and ω. The input/output data collected 
from simulation of the full nonlinear model of the 
process is used to identify the desired model. The 
nominal linear model is determined by least-squares 
fitting whereas the model parameter uncertainties are 
calculated from the covariance matrix generated from 
identification of the nominal linear model (Ljung, 
1987). 
Step 1 (Worst-case scenario): For the specified 
conditions, problem (20) is solved to find the critical 
time profile in ω and υ that produce the maximum 
variability in the system (function ).  dφ
Step 2 (Stability Test): Based on the pre-specified 
conditions and on the critical profiles found in the 
previous step, the stability test (4) is conducted. If the 
test fails, the values in d, and λ are redefined and the 
calculations are restarted from step 1. Otherwise 
proceed to step 3. 

     
54



Step 3 (Process Constraints): Problem (21) is 
solved to test whether process constraints are 
satisfied. 
Step 4 (Objective Function Evaluation): The 
system’s cost function (1) is calculated. If the values 
between the previous and the actual iteration in the 
objective function are less than a pre-specified 
tolerance and the process constraints are also within 
pre-specified tolerances, then an optimal solution has 
been found; otherwise, k is set to k=k+1, and a new 
search is performed starting from step 1.  

     

 
 

3. CASE STUDY AND RESULTS 
 
The proposed methodology formulated in the 
previous section is applied to solve for the optimal 
design of a mixing tank problem, previously studied 
by Mohideen et al. (1996). Although this process is 
described by relatively simple equations, the 
integration of design and control on this problem is a 
challenging task. The final designed configuration 
must be able to reject predefined bounded 
disturbances and process parameter uncertainty 
changes that may occur during normal operation. 
 
The system consists of two process streams mixed in 
a stirred tank as shown in Figure 1. The tank’s hold 
up V(t), and the outlet temperature T(t) are state 
variables that describe the system’s behaviour at time 
t. The hot feed flow rate, Fh(t), is an unmeasured 
variable that varies very infrequently in time; thus, it 
is treated in this study as a process parameter 
uncertainty (ω), whereas the hot stream temperature, 
Th(t), is a fast-varying perturbation to be treated 
consequently as a disturbance variable (υ). The cold 
feed stream is at a constant temperature, Tc, whereas 
the corresponding flow, Fc, can be manipulated 
manually or in closed loop. The outlet flow, F, is 
assumed to be a nonlinear function of the volume, 
V(t), and the valve constant, z, which operates within 
a pre-specified range of values as given in Table 1, 
and it can also be manipulated manually or in closed 
loop. The tank is assumed to be well stirred and the 
density of the substance is assumed constant. Table 1 
also includes the process model and numerical values 
used in the design of the process.  
 

 
 

Fig. 1. Case Study: Mixing tank process. 
 
The goal in this case study is to search for the 
controller tuning parameters (λ) and the nominal 
values for the design and the manipulated variables 
(d and u) that minimize the mixing tank’s hold up, 
Vd(t). The system’s final design must remain stable 

at any time and it has to satisfy process constraints, 
e.g. outlet temperature should remain between 
bounds, despite any possible values of the 
disturbance, Th, and the process parameter 
uncertainty, Fh.  
 

Table 1 Process model and data for mixing tank. 
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When performing the simultaneous design on this 
process, the mixing tank’s volume was controlled 
with a proportional-integral (PI) controller using the 
valve constant (z) as the adjustable variable, and the 
tank temperature, T, was controlled by another PI 
controller using the cold feed flow rate, Fc, as the 
manipulated variable. The cost function in this 
problem is considered to be the cost due to the tank 
size; thus, the design mixing tank’s hold up is given 
as follows: 
 
  (23) )()( V

spd kVtV +=
 

Where Vsp represent the capital cost at steady 
state(CC), and kV is the cost due to variability (VC) 
in the volume with respect to steady state. The 
operating costs (OP) are zero. Using (21), similar 
expressions to (23), not shown for brevity, are 
derived to test the constraints on the tank’s 
temperature T and on the manipulated variables Fc 
and z.  
 
The methodology explained above was used to 
perform the simultaneous design of this process. The 
controller’s set points (Vsp and Tsp) and tuning 
parameters (KCT and KCV) are considered as decision 
variables within the optimization problem (22). For 
simplicity, the PI controller’s time constants (τI) were 
assumed constants. The resulting optimization 
problem was implemented in MATLAB®. Table 2 
shows the results obtained while applying the present 
methodology and those obtained by Mohideen et al. 
(1996). To test the compliance with the constraints, 
the design obtained by this approach was simulated 
using the mixing tank’s process model (Table 1) and 
applying different sets of combinations in Th and Fh. 
As shown in Figure 2, the actual volume never 
exceeds the design hold up, Vd(t), for different 
combinations in Th and Fh.  

F,T 

V

T

Th  

Fh  

Tc 

Fc 
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Hot process stream 
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A complete comparison with Mohideen et al.’s 
results is not possible since the strategies applied to 
perform the simultaneous design were somewhat 
different. Mohideen et al. (1996) solved this problem 
applying a dynamic optimization-based approach. 
Although their design resulted in a smaller tank and 
only one PI-controller was used to control T by 
manipulating Fc, z was manipulated based on the 
nonlinear dynamic optimization to accommodate the 
changes in Fh for only 30 hours of operation. Hence, 
online implementation of their methodology will 
require repeated dynamic optimization based on a 
priori knowledge of future values of Fh. On the other 
hand, the present methodology solved this problem 
based on an off-line constrained nonlinear 
optimization while explicitly providing an additional 
PI controller for on-line control of the mixing tank’s 
volume by manipulating the valve constant z. 
Although the resulting volume is larger than 
Mohideen et al.’s and the bounds on Fc and T were 
relaxed, the present approach does not require a 
priori knowledge of the perturbation variables, Th 
and Fh. From the optimization point of view, the 
application of the criteria developed in this work 
avoids the task of numerically solving dynamic 
optimization problems, as used in the most recent 
methodologies (Sakizlis et al., 2004). 
 

Table 2 Comparison of decision variables values.  
 

Variables Solution Mohideen et al. (1996) 
Vd (m3) 1.39 1.0 
Vsp (m3) 1.38 -- 
Tsp (K) 337.96 360.0 
KcT  -3.60 -0.005 
KcV  -18.23 -- 
τIT (hr) 5.0 (fixed) 5.0 
τIV (hr) 5.0 (fixed) 5.0 
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Fig. 2. Mixing Tank’s actual volume versus time. 
 
 

4. CONCLUSIONS 
 
A new approach to integrate process design and 
control for processes under uncertainty and 
disturbances has been presented. This methodology 
uses a robust model, identified from simulations of 
the full nonlinear model around a steady state 
condition. Based on the identified robust model, 
bounds for stability and variability are calculated and 
are used for optimization. Due to the model 

parameter uncertainty associated with the robust 
model, the final design tends to be conservative. 
However, the current approach does not require 
dynamic optimizations, which are computationally 
expensive even in simple cases. 
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