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the life of the reservoir. In particular the use of sensors and remotely controllable valves 
in wells and at surface, in combination with large-scale subsurface flow models is 
promising. Various elements from process control may play a role in such ‘closed-loop’ 
reservoir management, in particular optimization, parameter estimation and model 
reduction techniques. Copyright © 2007 IFAC

Keywords: petroleum, production, model-based, control, optimization, system, 
identification, data assimilation, parameter estimation, adjoint, robust, model reduction. 

1. INTRODUCTION 

An increasing quality of life of the world’s 
increasing population will result in an increasing 
energy demand for the decades to come. Although 
the contribution of sustainable energy sources 
(hydro, wind, solar and biomass) is slowly going up, 
fossil fuels (oil, gas and coal) will remain to play a 
very important role until at least the end of this 
century; see e.g. Smil (2003). An increasing 
problem, in particular for oil, is that the ‘easily’ 
producible reservoirs have nearly all been found (to 
our current knowledge), and to a large extent been 
produced. Most oil fields consist of relatively thin 
slabs of porous rock buried at depths of hundreds to 
thousands of meters. After the drilling of wells the 
oil usually flows to the surface naturally, but after 
some years this primary recovery phase ends, and it 
will be necessary to inject water or gas into the 
reservoir to maintain the reservoir pressure and to 
displace the oil from the injection wells towards the 
production wells. However, even when using such 
secondary recovery techniques, most of the oil 
remains trapped in the pores of the rock, and often 
the oil recovery factor stays somewhere between 10 
and 50%. Increasing the recovery factor of existing 
oil fields is therefore a good alternative to finding 
new ones. Sometimes this is possible during a 
tertiary recovery phase through the use of ‘enhanced’ 
oil recovery techniques such as the injection of 
surfactants, polymers or steam. These techniques are 
relatively expensive, and, depending on the type of 
oil and the subsurface conditions, only economically 

feasible at oil prices even above the current high 
level. An alternative, emerging, method to increase 
the recovery factor is the application of measurement 
and control techniques to improve the control of 
subsurface flow. In particular the use of sensors and 
remotely controllable valves in wells and at surface, 
in combination with large-scale subsurface flow 
models is an increasing area of research, which is 
known in the oil industry under various names, such 
as ‘smart fields’, ‘intelligent fields’, ‘real-time 
reservoir management’, or ‘closed-loop reservoir 
management’. Many of the ‘smart’ applications of 
measurement and control in wells were initially 
focused on increasing the instantaneous production 
rate, i.e. on short term ‘production management’, 
through the use of ‘reactive’ control strategies.  Here 
we will consider long term ‘reservoir management’ 
with the aim to maximize recovery, or some 
economic objective function, over the life of the 
reservoir, see Fig. 1. This typically requires a more 
‘pro-active’ approach using system models to predict 
future performance. Sources of inspiration for our 
research are at one hand model-based control 
concepts as used in the process industry, which offer 
a wide variety of solutions to cope with uncertainties, 
nonlinearities and multi-scale optimization. At the 
other hand we draw inspiration from disciplines like 
meteorology and oceanography where advanced data 
assimilation techniques have been developed to 
condition large scale flow models (with more than 
106 state variables) to measured data while honoring 
measurement and model errors. 
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Fig. 1. Domains in time and space covering the main 
elements of the oil recovery process. 

2. RESERVOIR MANAGEMENT 

Fig. 2 depicts reservoir management as a model-
based controlled process (Jansen et al. (2005)). The 
system, at the top of the figure, comprises of one or 
more reservoirs, wells, and facilities for the 
separation and treatment of oil, gas and water. 
Generally, the system boundaries can be specified 
accurately for the wells and the surface facilities, but 
are much more uncertain for the reservoir of which 
the geometry is usually deduced from seismics with a 
limited resolution. Also the parameters of the system 
are known to varying degrees: the fluid properties 
can usually be determined quite well, but the 
reservoir properties are only really known at the 
wells. The subsurface is very heterogeneous, and the 
parameters relevant to flow are correlated at different 
length scales, but often over distances smaller than 
the well spacing. As a consequence, the uncertainties 
in the model parameters of the subsurface part of the 
system are very large, and during the design phase of 
an oil field development it is therefore customary to 
construct multiple subsurface models to simulate the 
flow of fluids for different geological ‘realizations’. 
The typical number of state variables in these system 
models is in the order of 104 to 106, with similar 
numbers for the model parameters. Numerical 
simulation of reservoir flow is performed in discrete 
time steps of weeks to months and a single forward 
run, i.e. simulation of some decades of oil 
production, typically involves hours to tens of hours 
computing time. Based on these large-scale system 
models it is possible to optimize the oil recovery 
process design (known as the field development 
plan). This concerns, for example, determining the 
number and position of wells, or the optimal water 
injection and oil production flow rates over the life 
of the reservoir. During the past decades the 
possibilities to control subsurface flow have 
increased considerably. This concerns complex well 
configurations, e.g. ‘meandering’ horizontal wells, or 
multi-lateral wells with multiple branches, and the 
installation of control valves in ‘smart’ wells or at 
surface. Model-based optimization is therefore a 
rapidly growing activity within the reservoir 
simulation community. This optimization process is 
indicated in blue in Fig. 2. During the oil production 
process, more or less regular measurements are 
performed at the top of the wells and in the facilities, 
which give an indication of the pressures and phase 
rates (i.e. oil, gas and water flow rates) in the surface 

part of the production system. Traditionally these 
measurements are performed monthly or quarterly 
and with a limited accuracy. During the past years, 
however, an increasing amount of sensors is being 
installed that give near-continuous information about 
the system pressures and phase rates, not only at 
surface but more and more also downhole. In 
addition, other measurement techniques have 
emerged that give an impression of the changes in 
reservoir pressure and fluid saturations in between 
the wells. This concerns in particular ‘time-lapse’ 
seismic measurements, which allow for monitoring 
the displacement of oil-water or oil-gas fronts 
between injection and production wells at regular 
(say quarterly to yearly) intervals. By combining the 
measured response of sensors and the simulated 
response of the system models it is possible to judge 
to what extent the models represent reality. With the 
aid of systematic algorithms for data assimilation it is 
then, to some extent, possible to adjust the system 
parameters such that the simulated response better 
matches with the measured data, and, hopefully, such 
that the models give better predictions of the future 
system response. The development of ‘automatic 
history matching’ techniques is therefore another 
area of current activity in reservoir simulation 
research. The data assimilation process is indicated in 
red in Fig. 2. 
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Fig. 2. Reservoir management depicted as a closed-
loop model-based controlled process. 

3. SYSTEM EQUATIONS 

3.1. Notation 

All our work is based on the use of numerical 
reservoir models. We express the model equations in 
state space notation. Vectors are indicated with 
Roman or Greek lower case letters, either in bold 
face or in index notation. Matrices are indicated with 
Roman or Greek capitals. The superscript T is used 
to indicate the transpose, and dots above variables to 
indicate differentiation with respect to time t.

3.2. Reservoir models 

We consider models for multiphase flow through 
porous media. Starting from the governing partial 
differential equations and boundary conditions, and 
applying a semi-discretization in space (using e.g. 
finite differences, finite elements or finite volumes) 
we obtain a set of ordinary differential equations that 
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can be expressed as (see Appendix A for a 
derivation) 

, ,x f x u  ,  (1) 

or, even more general, as  
, , ,g x x u 0  ,  (2) 

where f and g are nonlinear vector-valued functions, 
x is the state vector, u the input vector (control 
vector), and  a vector of model parameters. In a 
conventional iso-thermal reservoir simulation model, 
x typically contains pressures and phase saturations 
or component accumulations, u contains the well 
flow rates, well pressures, or valve settings in those 
grid blocks that are penetrated by wells, and 
contains parameters like porosities, permeabilities 
and other reservoir and fluid properties. Using some 
form of time discretization, the continuous-time 
equation (2) can be rewritten in discrete-time form as 

1, , ,k k kg x x u 0  ,  (3) 

where the subscript k indicates discrete time. To 
complete the model we need to specify initial 
conditions, which, in the discrete case, can be 
represented as 

0 ˆx x  . (4) 

Output variables y, combined in an output vector y,
are a function of the state variables x, according to 

k ky h x  ,  (5) 

where h is a vector-valued function. Typical outputs  
are wellbore pressures and phase flow rates, either 
measured at surface or downhole. Note: Although in 
this paper we use a notation that is quite obvious to 
control engineers, the notation used in the reservoir 
engineering literature will often be less familiar. 

3.3. Nature of the equations 

As discussed in some more detail in Appendix A, the 
governing equations for multi-phase flow through 
porous media are a set of mildly nonlinear parabolic 
(diffusion) equations, describing the rate of change 
of pressures, coupled to a set of strongly nonlinear 
parabolic-hyperbolic (diffusion-convection) equati-
ons, describing the rate of change of phase 
saturations or component concentrations. The very 
low flow rates imply that inertia effects may usually 
be neglected. Moreover, the flow is strongly 
dissipative, such that the response to disturbances is 
typically over-critically damped and instability of the 
flow in time is not an issue. (Numerical instabilities 
during simulation of the discretized equations may of 
course still occur, notably when the solution methods 
used are not fully implicit.) The time constants of the 
pressure equation are typically in the order of hours 
to months, whereas the diffusive parts of the 
saturation equations may have time constants up to 
thousands of years. Also the convective terms (i.e. 
the fluid velocities) are usually so small that the 
propagation speeds of oil-water or oil-gas fronts are 
typically much lower than those of the pressure 
waves. Under some mild assumptions the pressure 
equations may therefore often be approximated as 
linear with slowly time-varying coefficients. The 

saturation equations are inherently nonlinear, and in 
the limit of zero diffusion may exhibit typical 
properties of hyperbolic equations such as shocks 
and rarefaction waves. The coefficients of the 
equations are generally very poorly known, and 
moreover often vary spatially up to four orders of 
magnitude.  

4. OPTIMIZATION 

4.1. Optimization methods 

For a given configuration of wells, and in particular 
for a flooding scenario involving multiple injectors 
and producers, we can use the well rates or pressures 
to optimize the flooding process over the life of the 
reservoir. First we will address optimization without 
updating of the reservoir model, i.e. the blue loop in 
Fig. 2. As in any optimization problem, we need an 
objective function and constraints. For example, the 
objective could be to maximize recovery or the net 
present value of the water flooding process. 
Generally, the objective function can be expressed 
as:

1
,

K

k k k
k

J J y u , (6) 

where K is the total number of time steps, and where 
Jk represents the contribution to J in each time step 
(e.g. the sum of oil revenues and water injection and 
production costs during that time interval, where the 
costs have a negative value). Constraints can be 
expressed in terms of the state variables or the input 
variables and may be equality or inequality 
constraints, which we represent in a general form as 

,k kc x u 0 .  (7) 

The control problem can now be formulated as 
finding the control vector uk that maximizes J over 
the time interval k = 1, …, K, subject to system 
equations (3), initial conditions (4), output equations 
(5) and constraints (7). Many numerical techniques 
are available to solve this optimization problem. In 
our work we have been using a gradient-based 
optimization technique where the derivative 
information is obtained through the use of an adjoint 
equation; see Brouwer and Jansen (2004), Van Essen 
et al. (2006) and Zandvliet et al. (2007). Much 
earlier, adjoint-based techniques were introduced in 
reservoir engineering for the optimization of tertiary 
recovery processes such as polymer or CO2 flooding; 
see Ramirez (1987). The first paper on gradient-
based control of water flooding is Asheim (1988), 
followed by, among others, Virnovsky (1991), 
Zakirov et al. (1996) and Sudaryanto and Yortsos 
(2000). However, industry uptake of these methods 
was almost absent until quite recent, when the advent 
of ‘smart well’ and ‘smart fields’ technology caused 
a revival of interest. Gradient-based optimization 
methods make use of the derivatives ikJ u , to 
guide the iteration process. Here, iku  is a single 
element i of vector uk at time k. Gradient-based 
methods generally require much less function 
evaluations than gradient-free methods, but at the 
price of having to compute the derivatives at every 
iteration step. Alternative methods to perform field-
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life optimization, and in particular those addressing 
well placement optimization, use ‘non-classical’ 
methods such as genetic algorithms; see e.g. Yeten et 
al. (2003) and Güyagüler and Horne (2004). 
Moreover, applications to optimize more complex 
reservoir flow processes, such as alternating-water-
gas (WAG) injection, are beginning to receive more 
attention, sometimes in combination with reduced-
physics models such as streamline models or 
response surfaces generated with experimental 
design (Esmaiel et al. (2005)). 

4.2. Optimal control 

A very efficient way to obtain gradients of the 
objective function J with respect to the inputs uk is 
given by ‘optimal control theory’ which makes use 
of an adjoint formulation; see e.g. Stengel (1994). 
Once the gradients have been obtained, a wide 
variety of gradient-based techniques is available to 
iterate to a (locally) optimal solution; see e.g. Gill et 
al. (1981). Appendix B gives a brief overview of 
adjoint-based optimization. Implementation of the 
adjoint formulation in a numerical reservoir 
simulator is conceptually simple if the simulator is 
fully implicit, because in that case the Jacobian 
matrix k kg x , which is required in the adjoint 
formulation, is already available; see Sarma et al 
(2005). In practice the programming effort is still 
considerable because of the complexity of modern 
reservoir simulation programs, which may contain up 
to millions of lines of code. Another, more 
theoretical, problem is the systematic incorporation 
of the constraints c as specified in equation (7). Some 
possible solutions are given in Sarma et al. (2006a), 
Montleau et al. (2006), and Kraaijevanger et al. 
(2007). One of the disadvantages of gradient-based 
techniques is their tendency to arrive at a local 
optimum rather than a global one. This is particularly 
the case if we have a large number of controls (wells) 
and a large number of points in time at which we 
may change the control setting, resulting in a very 
large number of possible control trajectories. Several 
regularization techniques can be applied to ‘smooth’ 
the control trajectories and to limit the freedom in 
choosing control settings. Although this may result, 
theoretically, in a sub-optimal global optimum, it 
will hopefully result in less local optima, and in an 
increased speed of the iterative optimization process; 
see e.g. Stengel (1994). An adaptive multi-scale 
regularization technique for water flooding 
optimization was implemented by Lien et al. (2006). 
Recently we also started to investigate the use of 
adjoint-based techniques to optimize well locations, 
and the first results are promising; see Handels et al. 
(2007). 

4.3. ‘Smart well’ optimization 

The implementation of a dynamic water flooding 
optimization strategy, as e.g. obtained with the aid of 
optimal control theory, requires the availability of 
adjustable valves. Mostly, wells are controlled at the 
‘well head’, i.e. at the point where the well reaches 
the surface. A recent development are so-called 
‘smart wells’, equipped with down hole ‘inflow 

control valves’ which allow for the inflow control of 
individual well segments in one or more reservoirs 
penetrated by the well; see Fig. 3. Initially, the use of 
smart well technology was strongly focused on short-
term production optimization; see e.g. Naus et al. 
(2006). However, as shown in Brouwer and Jansen 
(2004) and in several publications thereafter, there 
may be considerable scope to achieve increased 
ultimate recovery using optimal control over the 
entire life of the reservoir. In the operational practice 
of controlling wells it is often more convenient to 
simply switch off a well rather than to try to keep its 
production at a predefined rate or pressure. 
Moreover, on/off valves are also cheaper than 
continuously variable valves, especially downhole 
valves which may cost tens of thousands of dollars 
each. Fortunately, some water flooding control 
problems appear to have an optimal solution that is 
close to or sometimes equal to ‘bang-bang’, i.e. it is 
an optimal strategy to just open or close valves rather 
than to gradually adjust them; see Zandvliet et al. 
(2007). Maybe somewhat surprisingly, hardly any 
attention has been paid to the use of (nonlinear) 
model-predictive control (NMPC) techniques, or 
even to just performing optimal control with a 
receding horizon, with the exception of the work of 
Saputelli et al. (2006). Indeed there appear to be 
ample opportunities to investigate the use of NMPC, 
and possibly other optimization techniques from the 
process control community, for reservoir flooding 
optimization. 

4.4. Robust control 

One of the major challenges in reservoir engineering 
is taking decisions in the presence of very large 
uncertainties about the subsurface structure and the 
parameters that influence fluid flow. Reservoirs are 
inhomogeneous and usually consist of fossilized 
deltaic or fluvial deposits (sand, clay, carbonates) 
with a distinct layering and sometimes a complicated 
network of fractures. They have often been tilted, 
faulted or otherwise deformed. Seismic information 
has a resolution that is generally too coarse to 
determine the individual geological layers in detail. 
Borehole measurements, using a whole range of 
physical measurement principles, give a much more 
detailed picture of the subsurface, but are scarce and 
only truly representative for a small area around the 
wells. As was already indicated in Fig. 2, one of the 
ways to cope with this uncertainty during the field 
development phase of a reservoir is to use multiple 
subsurface models, also known as geological 
realizations. In that case we would also like to 
perform the optimization over the ensemble of 
realizations, but because we can only use one 
optimization strategy for the real field, we need to 
average the results in some sense. 
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Fig. 3. Schematic representation of a ‘smart’ 
horizontal well, equipped with an inner tube 
(green) and an outer tube, and valves to control 
the inflow from the reservoir into the individual 
segments of the well. The grey triangles represent 
openings that connect the reservoir to the (blue) 
annular space between the inner and outer tube. 
The small blue circles represent the remotely 
controllable inflow control valves. 

Recently we developed a robust control strategy 
through computing the expected value of the 
objective function J as 

1

1 , ,
RN

i

iR

E J J
N

y u  (8) 

where i are the parameter vectors of realizations 
i =1, …, NR; see van Essen et al. (2006). As an 
example, consider Fig. 4 which displays two 
equiprobable realizations, out of an ensemble of 100, 
of a reservoir that has a fluvial structure with high-
permeability sandstone channels (green) in a 
background of low permeability claystone (blue). 
Fig. 5 displays the results, expressed as a cumulative 
distribution function of the financial performance 
measure (objective function) J, for three optimization 
methods, as applied to the hundred realizations. The 
blue curve corresponds to an often used reactive 
water flooding strategy, where the production wells 
are shut-in once the water/oil ratio exceeds a preset 
maximum. The green curve corresponds to a nominal 
optimization strategy based on a single ‘best’ 
realization. The red curve corresponds to the robust 
optimization strategy based on hundred realizations, 
and the purple curve to the same robust strategy but 
applied to a different set of 100 realizations drawn 
from the same population of reservoir models. The 
curves clearly show the value of optimization over 
reactive control, and the additional benefit of a 
robust optimization strategy: not only is the mean (at 
the horizontal dotted line) highest for the robust 
results, also the standard deviation is lowest (steepest 
curves). 

5. DATA ASSIMILATION 

5.1. Formulation as optimization problem 

Data assimilation, or automatic history matching, is 
the adaptation of the states and parameters of a 
system model to measured data, as indicated in red in 
Fig. 2. In our case this implies updating states x and 
parameters  using measured output data ym.

Fig. 4. Two equiprobable realizations of a 
channelized reservoir. The top figure shows the 4 
production wells (brown) surrounded by 8 water 
injection wells (black). (Van Essen et al. (2006)). 

Fig. 5. Cumulative distribution functions for three 
different control strategies. (Van Essen et al. 
(2006)). 

Often the history matching problem is formulated as 
an optimization problem for the parameters only, 
with an objective function defined in terms of the 
mismatch between measured and simulated output 
data: 

1

1

Ti i i i
m y m

i
J y y R y y , (9) 

where Ry is a weight matrix which is often chosen as 
the spatial covariance matrix of the measurement 
errors, and where the counter i = 1, …,  indicates 
the measurements at different points in time. The 
optimization problem is then usually solved with the 
aid of an adjoint-based method; see e.g. Chavent et al 
(1975) and Li et al. (2003). Often the objective 
function is expanded to include a term that penalizes 
large deviations between the updated parameter 
values u and the prior values :

1

1

1 .

Ti i i i
m y m

i

Ti i i i
u u

J y y R y y

R
. (10) 
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The weight matrix R can be interpreted as a 
parameter error covariance matrix. If the states are 
also updated, the uncertainty is taken into account 
with an additional covariance matrix Rx. Joint 
updating of states and parameters can be done using 
the ‘representer method’ which was first introduced 
in ocean engineering; see Bennett (2002). For early 
applications to reservoir engineering, see Rommelse 
et al. (2006), and Przybysz-Jarnut et al. (2007). An 
alternative way to cope with model uncertainties is 
through the use of the ensemble Kalman filtering 
method, which we will briefly discuss below. 
Specialized model updating methods have been 
developed in the reservoir engineering community 
using, e.g., streamline simulation to rapidly derive 
sensitivities of saturation changes along streamlines 
(Vasco et al. (1999)). Other specialized methods 
perform history matching under geostatistical 
constraints, such as the probability perturbation 
method (Caers (2003)), or emphasise the 
quantification of uncertainty; see e.g. Erba  and 
Christie (2007). 

5.2. Ensemble Kalman filtering 

As is well known in the process control community, 
the minimization problem to estimate states as 
described above may also be formulated as a 
sequential estimation procedure, i.e. such that the 
data are assimilated whenever they become 
available. It can be shown that for linear systems, 
and assuming Gaussian measurement and process 
noise, this sequential ‘Kalman filter’ approach results 
in exactly the same answers as the representer 
method (Bennett (2002)). For nonlinear problems, 
the ordinary Kalman filter breaks down because the 
nonlinearity results in non-Gaussian noise when 
propagated through the system. In the ensemble 
Kalman filter (EnKF) the analytical error 
propagation is replaced by a Monte Carlo approach: 
the model error covariance is computed from an 
ensemble of model realizations which are all 
propagated in time. This ensemble method has 
proved very successful in oceanographic applications 
where very large models, containing millions of state 
variables, are frequently updated using a variety of 
data sources; see Evensen (2006). During the 
forecast step a simulation is run for each of the 
model realizations up to the time where new 
measurements become available. With these 
measurements, all realizations in the model are 
updated by combining the new real measurements 
with forecasts from the ensemble. Recently a large 
number of publications have appeared that apply the 
EnKF to reservoir engineering problems; see e.g. 
Nævdal et al. (2005), Reynolds (2006) and Evensen 
(2006). These implementations of the EnKF also 
treat parameters as unknowns, which leads to the use 
of an extended state vector x  = [xT T]T.

5.3. Parameterization 

In our parameter and state estimation problems we 
are dealing with a very large number of ‘inputs’ 
(parameters and states) that need to be adjusted to 
obtain a best match between modeled and real data. 

A typical reservoir model may contain millions of 
unknown parameters, such as grid block 
permeabilities and porosities, fault transmissibilities 
and initial conditions. Fortunately most of these 
parameters display spatial correlations that can be 
used to reduce the dimension of the parameter space, 
and various techniques to regularize the parameter 
estimation problem have been proposed using, e.g., 
zonation, wavelets, Karhunen-Loève decomposition 
or discrete cosine transforms; see Jafarpour and 
McLaughlin (2007) for a recent overview. It has been 
shown that it is also possible to make use of spatial 
correlations in the states (pressures, saturations) to 
reduce the order of reservoir models using system 
theoretical techniques, but application of these 
possibilities either in optimization or in data 
assimilation has hardly yet been pursued. For some 
early attempts, see Heijn et al. (2004), Van Doren et 
al. (2006), Markovinovi  and Jansen (2006), and 
Gildin et al (2006). In general the amount of 
information that can be obtained from well data is 
rather limited, especially because the pressure 
propagation through a reservoir is a diffusive 
process. Sometimes it is possible to obtain areal 
information through the repetition of seismics in 
time, which may give an indication of those reservoir 
areas where pressures or saturations have changed. 
However, the data obtained from production 
measurements and time-lapse seismics are never 
sufficient to fully characterize the states and 
parameters in a reservoir, and history matching is 
therefore an inherently ill-posed problem. Especially 
if reservoir models are used for field re-development 
planning, involving e.g. the drilling of new wells, 
geological models are essential to constrain the 
solution space of the data assimilation problem. 
Surprisingly, a formal analysis of the observability 
and identifyability of reservoir flow and the 
identifyability of the model parameters, has, to our 
knowledge, not yet been reported and there appears 
to be ample scope to clarify these system-theoretical 
aspects of subsurface flow. 

6. CLOSED-LOOP RESERVOIR MANAGEMENT 

Finally, we consider an example of full closed-loop 
reservoir management, as indicated in Fig. 1, by 
combining optimization (the ‘blue loop’) with data 
assimilation (the ‘red loop’). The results are taken 
from Overbeek et al. (2004), and are comparable to 
other early results reported in Brouwer et al (2004), 
Nævdal et al. (2006) and Sarma et al. (2006b). Fig. 6 
depicts a reservoir modeled with 12100 grid blocks 
which was used as ‘truth’ to generate synthetic 
‘measured’ data. The 10 crosses at the left represent a 
row of vertical water injection wells, and the 10 
circles at the right a row of producers. Just as in the 
previous example, the reservoir contains high-
permeability sandy channels (in red) amidst a low-
permeability clayish background (blue). We assumed 
that noisy measurements of pressure and total flow 
rate (oil plus water) were available in all wells. We 
used optimal control theory with a steepest descent 
method for the flooding optimization and the EnKF 
method for updating the unknown grid block 
permeabilities in the ensemble of reservoir models. 
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1100 m

Fig. 6. Top view of the ‘true’ reservoir used to 
generate synthetic data. (After Overbeek et al. 
(2004)) 

The optimization objective was oil revenue minus 
water production costs. The top row in Fig. 7 depicts 
the snapshots in time of a conventional flooding 
strategy. As expected, the injected water rapidly 
flows through the highly permeable channels, which 
results in early water production in some of the 
producers. After one pore volume of water has been 
injected all oil could, in the ideal case, have been 
produced, but it is clear that because of the 
heterogeneous reservoir structure a lot of oil has been 
left behind; see the top-right figure. The second row 
of Fig. 7 depicts the results if the water flood is 
operated in ‘closed-loop’ using an ensemble of 100 
coarse reservoir models of 100 grid blocks each with 
parameters that are frequently updated with EnKF 
during the flooding process. The figures at the 
bottom row show that the initial average 
permeability estimate is nearly uniform (t = 0 days), 
but that after a while a heterogeneous pattern has 
emerged (t = 116 days) that does not really change 
very much any more until the end of the flooding 
period (t = 750 days). As follows from comparison 
of the final (rightmost) figures in the first two rows, 
the optimized water flooding strategy results in a 
significantly improved oil recovery. In this example 
the initial ensembles did not show a marked 
heterogeneity, but just a Gaussian random spatial 
structure, and therefore we based the optimization on 
the ensemble average, rather than using a robust 
strategy as in the previous example. The third row in 
Fig. 7 shows the flow rates in the 10 injection wells 
and illustrates that the optimization results in a 
dynamic strategy of closing and opening different 
valves over time. 

7. DISCUSSION 

The concept of closed-loop reservoir management 
and production optimization has been described in 
different forms before; see e.g. Chierici (1992), or 
Nyhavn (2000), with further references given in 
Jansen et al. (2005). However none of these papers 
makes use of systematic techniques for both 
optimization and data assimilation. The examples 
shown in this paper are simplistic, and in a realistic 
field, with realistic well constraints, the scope for 
optimization will be smaller. 
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Fig. 7. Snapshots in time. Top row: saturations 
during conventional water flooding (red: oil, blue: 
water). Second row: Saturations during closed-
loop optimized water flooding. Third row: Flow 
rates in the injection wells. Bottom row: 
estimated permeability field (average of 100 
ensemble members). Note: The bottom-right 
figure has been overlain with the ‘true’ channel 
structure from Fig. 6. (After Overbeek et al. 
(2004)). 

However, the examples illustrate some essential 
aspects of our closed-loop management approach: 

Systematic optimization of well rates over the 
producing life of a reservoir produced with water 
flooding offers scope for increased oil recovery 
and reduced water production. 
The effect of uncertain reservoir parameters can 
be reduced through a) robust optimization over 
an ensemble of reservoir models, and b) regular 
updating of the models using production data. 
A relatively simple reservoir model may still 
give acceptable results when used for 
optimization of a fixed configuration of injection 
and production wells. 

Especially the last point raises some interesting 
system-theoretical questions which are topic of our 
current research. The observability of reservoir 
pressures (which are required to estimate the 
permeabilities) from the wells is probably very small 
because of the diffuse nature of pressure propagation 
in porous media. However the controllability of the 
pressure field (which drives the saturation changes) 
is equally limited, which explains why a relatively 
simple model works so well to optimize flooding in a 
fixed configuration of wells. We note that this would 
to a much lesser extent be true if we were to drill new 
wells, in which case additional geological 
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information would be required. Another, more 
practical, aspect of our research that requires input 
from measurement and control theory involves the 
combination of short-term production optimization 
and long-term reservoir management. This will 
probably require a layered control structure, as 
commonly used in the process industry where longer 
term optimization results serve as constraints for the 
short-term optimization, which in turn provides set 
points for field controllers; see e.g. Saputelli et al 
(2006). In conclusion, there appears to be ample 
scope to use a variety of results from process control 
theory and practice, in particular for optimization, 
parameter estimation and model reduction, to further 
develop the techniques for model-based control of 
subsurface flow  
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APPENDIX A: NUMERICAL SIMULATION OF 
SUBSURFACE FLOW 

As in all branches of fluid mechanics, the physics of 
flow through a porous medium can be described with 
the aid of partial differential equations that represent 
conservation of mass, momentum and energy, and 
equations of state that describe the fluid properties as 
a function of pressure and temperature. Except in 
case of steam flooding we can assume that reservoir 
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flow is isothermal, which implies that we may 
disregard the energy balance equation. Moreover, the 
movement of fluids is usually so slow that we can 
disregard inertial effects, and that instead of the 
momentum balance equation we may use an 
empirical relationship between pressure drop and 
flow velocity known as Darcy’s law. For the simple 
case of two-phase (oil-water) flow we can write the 
mass balance equation for each phase in vector 
notation as 

0i i
i i i i

S
q

t
v , (A.1) 

where  is fluid density, v is (superficial) fluid 
velocity,  is porosity, S is fluid saturation of the 
pore space (0 S  1), t is time, q''' is flow rate per 
unit volume, and the subscript i  {o, w} indicates 
the oil and water phases respectively. Darcy’s law 
can be expressed as  

ri
i i i

i

k p g dv K , (A.2) 

where K is the permeability tensor,  fluid viscosity, 
kr relative permeability, p pressure, g acceleration of 
gravity and d depth. The permeability tensor K,
whose elements have units of surface area, represents 
how easily the fluids flow through the rock in 
different directions. Usually the orientation of the 
coordinate system can be aligned with the geological 
layering in the reservoir such that K is a diagonal 
matrix: 

, ,x y zdiag k k kK  , (A.3) 

where kx, ky and kz are directional permeabilities in 
the x, y and z coordinate directions. The 
dimensionless relative permeabilities kri are functions 
of S, and are reduction factors that represent the 
increase in flow resistance caused by multi-phase 
effects. The resistance to concurrent flow of oil and 
water is generally much higher than the sum of the 
resistances to flow of the individual phases, and the 
relative permeabilities are therefore a major source 
of nonlinearity in the multi-phase equations. 
Combining equations (A.1) and (A.2) results in 

0i ii ri
i i i i

i

Sk p g d q
t

K .

  (A.4) 
Equation (A.4) contains four unknowns, pw, po Sw
and So, two of which can be eliminated with aid of 
the relationships 

1w oS S , (A.5) 

o w c wp p p S , (A.6) 

where pc(Sw) is the oil-water capillary pressure which 
is another source of nonlinearity in the flow 
equations. Substituting equations (A.5) and (A.6) in 
equations (A.4), expanding the right-hand sides, 
applying chain-rule differentiation, substituting the 
isothermal equations of state, expressed as oil and 
water compressibilities 

1

R

o
o

o o T

c
p

 , (A.7) 

1 1

R R

w w
w

w w w oT T

c
p p

,

and substituting the rock compressibility 
1

r
o

c
p

 , (A.8) 

allows us to express equations (A.4) in terms of po
and Sw as follows: 

0 ,

w rw c
o w w

w w

o w
w w w r w w

k pp S g d
S

p SS c c q
t t

K
 (A.9) 

1 0 .

o ro
o o

o

o w
o w o r o o

k p g d

p SS c c q
t t

K
 (A.10) 

The two-phase flow equations as formulated in 
expressions (A.9) and (A.10) contain two state 
variables: the oil pressure po and the water saturation 
Sw. The equations are nonlinear because of the 
saturation dependence of the capillary pressure pc
and the relative permeabilities kr. In the more general 
case there may also be a pressure dependency of the 
densities , the porosity , and the compressibilities 
c, in particular if the formulation is extended to 
include gas as a third phase. The nature of the 
equations is discussed in e.g. Peaceman (1977), Aziz 
and Settari (1979) and Ewing (1983). It can be shown 
that the pressure behavior is essentially diffusive, i.e. 
that the corresponding equations are parabolic and 
become elliptic in the limit of zero compressibility. 
The saturation behavior is mixed diffusive-
convective, i.e. the corresponding equations are 
mixed parabolic-hyperbolic and become completely 
hyperbolic in the case of zero capillary pressure. The 
equations can be discretized in space and time. Most 
numerical reservoir simulators apply a spatial 
discretization scheme based on finite difference or 
finite volume formulations, using an upstream 
weighting in the convection-dominated terms. In a 
simplified case where we disregard the effects of 
capillary pressure, and gravity, and where we assume 
that the input consists of prescribed flow rates in the 
wells only, we obtain a system of nonlinear first-
order differential equations that can be expressed as 

wp ws ww

op os oo

V s V qT s 0p p
V s V qT s 0s s

, (A.11) 

where p and s are vectors of pressures po and water 
saturations Sw respectively, V is an accumulation 
matrix (containing the parameters , co, cw and cr), T
is a transmissibility matrix (containing the 
parameters k, kr and ), and qo and qw are vectors of 
oil and water flow rates with non-zero elements 
corresponding to gridblocks penetrated by a well. 
Both V and T are functions of s, either directly or 
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through the parameters. In injection wells we can 
prescribe qw, while qo is equal to zero. In production 
wells we can not directly control qo and qw, but we 
can control the total flow rates qt = qo + qw as 

w w
t

o o

q F s
q

q F s
, (A.12) 

where Fw and Fo are diagonal matrices with 
saturation-dependent terms which add more 
nonlinearities to the system. Further complexities 
occur when we prescribe pressures in the wells rather 
than flow rates, ands when we take in to account the 
effects of capillary pressures and gravity. Moreover, 
reservoir simulators usually also model a third phase, 
gas, which has a pressure-dependent oil-solubility. A 
next step in complexity is obtained when individual 
hydrocarbon components are modeled, rather than 
just oil and gas, or when chemical interactions or 
thermal effects are taken into account; see e.g. Aziz 
and Settari (1979). However in all these cases it is 
possible to obtain a set of system equations which 
can be expressed in a form similar to equation 
(A.11), or more compactly, as 

V x x T x x F x q , (A.13) 

where x = [p, s]T. Equation (A.13) can be recasted in 
a generalized nonlinear state space form 

1 1 2 2, , ,f x x f x u , (A.14) 

where we have introduced the parameter vectors 1

and 2. The input vector u is related to the vector of 
well flow rates q as u = Luq q, with a selection 
matrix Luq that selects the non-zero elements of q,
i.e. those elements that correspond to grid blocks 
penetrated by a well. For a reservoir model with n
grid blocks and m wells, and modeling two phases 
only, we therefore have a state vector x and an input 
vector u of dimensions 2n and m respectively. The 
parameter vectors were introduced to represent those 
parameters that are uncertain and that need to be 
identified or updated during the reservoir 
management process. In the examples in this paper 
we restricted the parameter uncertainty to a 
homogeneous permeability k = kx = ky = kz, which 
however, may still be different in each grid block 
such that in our case 1 and 2 have dimensions 0 and 
n respectively. Time discretization of the space-
discretized system equations is usually performed 
fully implicitly, which implies that each time step the 
nonlinear equations are solved iteratively using a 
Newton-Raphson scheme. Under the assumption that 
f1 is invertible, which is the case for most problems, 
we can rewrite equations (A.12) in classical 
nonlinear state space form as was done in equations 
(1) or (2) in the body of the text. We note that we 
only use this classical state space form to simplify 
the subsequent analysis. In an actual numerical 
implementation, the time discretization is always 
performed starting from the generalized form (A.12). 
Typical grid block sizes in a reservoir simulation 
model are in the order of tens to hundreds of meters 
in directions aligned with the geological layers, and 
meters to tens of meters in the direction 
perpendicular to the layers, and reservoir models 
may contain from tens of thousands up to a few 

millions of grid blocks. Typical simulation time steps 
are in the order of weeks to months, and a single 
reservoir simulation of the producing life of a field 
requires hours to sometimes days of computing time. 

APPENDIX B: ADJOINT-BASED 
OPTIMIZATION 

Consider the optimization problem 
max , 1, ,

k

J k K
u

 (B.1) 

with objective function (6). We aim to compute the 
optimal control uk with the aid of a gradient-based 
algorithm, which requires the derivatives of J with
respect to uk. The problem in determining the 
derivatives is the indirect dependence of the variation 
Jik in the objective function on a variation uik of the 

input. Here, uik means the variation of element i of 
vector u at time k. Each term Jk, at an arbitrary time 
k = , is not only a direct function of u , but also a 
function of y , which, through equation (5), is a 
function of x , which in turn, through equation (3), is 
a function of u . The variations should therefore be 
computed as 

K
k k k

i i
k k ik

J JJ u
u

y x u
u y x u

. (B.2) 

(Note the different subscripts k and ). The term 
xk/ u  gives problems because we need to solve the 

recursive system of discrete-time differential 
equations (3) to connect the state vectors 
xk, k = , …, K to the input u . The complex 
dependence can be taken into account by considering 
equation (3) as a set of additional constraints to the 
optimization problem, and applying the technique of 
Lagrange multipliers to solve the constrained 
optimization problem. Moreover, we may formally 
also consider the initial condition (4) and the output 
equation (5) as constraints, and, setting aside the 
‘ordinary constraints’ c, we can therefore define a 
modified objective function 

1 1 1 0 0
1

1 1 1 1
0

1 1 1 1

,

, ,

T
k k k

K
T
k k k k k

k T
k k k k

J

J

y u x x

g x x u

y h x

, (B.3) 

where the constraints have been ‘adjoined’ to Jk with 
the aid of vectors of Lagrange multipliers  and .
We can obtain a first-order description of the effect 
of changing uk on the magnitude of J , through 
taking the first variation of equation (B.3). A 
necessary condition for an optimum is stationarity of 

J for all variations, which leads to the following set 
of equations: 

1
1 0

0

T T Tg 0
x

 (B.4) 

1
1

T T T Tk k k
k k k

k k k

g g h 0
x x x

 (B.5) 

T T TK K
K K

K K

g h 0
x x

 (B.6) 
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1
1

1

T Tk
k

k

J 0
y

 (B.7) 

1 1
1

1 1

T Tk k
k

k k

J g 0
u u

 (B.8) 

1 1, ,T T
k k kg x x u 0  (B.9) 

0
T Tx x 0  (B.10) 

1 1
T T

k ky h x 0  (B.11) 

The last three equations are identical to output 
equation (5), initial condition (4) and system 
equation (3), and are therefore automatically 
satisfied. Equation (B.8) represents the effect of 
changing the control on the value of the objective 
function, while keeping all other variables fixed. For 
a non-optimal control this term is not equal to zero, 
but then it is exactly the expression that we require to 
iteratively obtain the optimal control using a 
gradient-based algorithm. Equation (B.7) allows us 
to compute the Lagrange multipliers k+1,
k = 0, … K-1. Next we can use equation (B.6) to 
compute multiplier K for the final discrete time K,
and thereafter the discrete-time differential equation 
(B.5) to recursively compute the multipliers k for 
times k = 0, … K-1. Finally, equation (B.4) 
represents the effect of changing the initial condition 
x0 on the value of the objective function, while 
keeping all other variables fixed. However, because 
we prescribed the initial condition through equation 
(4) this term is in our case only of theoretical 
relevance. Solution of the optimization problem now 
consists of repeating the following steps until the 
optimal control vector uk has been found: 

‘Forward’ simulation of the system equations 
(5), starting from initial conditions (4) and an 
initial choice for uk.
‘Backward’ simulation of the adjoint equations 
(B.5), starting from final conditions (B.6). 
Computation of the derivatives of J with respect 
to the controls uk with the aid of equation (B.8). 
Computation of an improved estimate of uk,
using the derivatives and a gradient-based 
optimization routine of choice. 

Because of its computational efficiency in 
calculating the gradients of the objective function, 
adjoint-based optimization is particularly attractive 
for problems with a large number of control 
parameters. 
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