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Abstract: Design of Kalman filter type and moving horizon estimators for on-line 
estimation applications based on first principles models is reviewed. Important design 
issues are discussed, such as: model development; choice of process noise model and 
selection of model parameters for on-line estimation; use of asynchronous and delayed 
measurements; and off-line estimation of fixed but uncertain model parameters. The main 
conclusion, which is substantiated through application examples, is that robust and 
reliable estimation applications based on first principles models of considerable 
complexity, can be designed and implemented for use in an industrial environment.  
Copyright  ©  2007 IFAC 
 
Keywords: State estimation; Parameter estimation; Estimation algorithms; Kalman filters; 
Moving horizon estimation; On-line estimation; Industrial applications. 

 
 
 
 

1. INTRODUCTION 
 
In recent years the interest in optimization of process 
operations has increased significantly in most 
process industries. The use of stationary process 
models for steady-state real-time optimization (RTO) 
has been applied for optimization of continuous 
process operations for a long time in some process 
industries. However, optimal operation of processes 
which are characterized by continuous operations 
with frequent grade changes, semi-batch or batch 
operations often demand repetitive dynamic 
optimization, e.g. implemented using nonlinear 
model predictive control techniques. Such 
applications are based on fundamental process 
models derived from first principles, which require 
real time estimation of process states and uncertain 
process parameters. 
 
This paper focuses on the development and 
implementation of on-line estimation applications in 
the process industries. Even though the state and 
parameter estimation problem occurs in a much 
wider context than as part of a feedback control or 
on-line optimization system, the focus will be on the 
latter.  
 
Process models are assumed to be formulated on a 
time-discrete nonlinear stochastic state-space form: 
 
 

 1 1 1( , , , )k k k k− − −=x f x θ u v  (1) 
 
 1( , , )k k k k−= +y g x θ u w  (2) 
 
where 

• kx is the - vectorxn of states at time kt ; 
• θ is the - vectornθ of model parameters; 
• 1k −u is the - vectorun of measured process 

inputs, which are assumed constant over the 
time interval 1[ , ]k kt t− ; 

• ky is the - vectoryn of output measurements 
at time kt ; 

• 1k −v  and kw are sequences of independent 
random process and measurement noise 
variables (white noise sequences); 

• 1 1 1( , , , )k k k− − −f x θ u v  is the nonlinear process 
model. f  is generally the solution to a 
system of differential-algebraic equations 
(DAE) or ordinary differential equations 
(ODE) between the sampling instants 

1kt − and kt ; 
• 1( , , )k k −g x θ u  is the nonlinear measurement 

model; 
• the basic sample interval 1[ , ]k kt t−  is 

assumed to be constant. 
 

Preprints Vol.2, June 6-8, 2007, Cancún, Mexico

19



     

The state estimation problem is to determine an 
estimate of the state ˆ ˆ( )k kt =x x  given the chosen 
model structure, an a priori initial state estimate 

0 0( )t =x x , and a sequence of noisy measurements 

0( ) : { ( ), , ( )}k kY t t t= y y… . Rawlings and Bakshi 
(2006) give a recent overview of currently available 
methods for state estimation in linear, constrained 
and nonlinear systems. In the stochastic setting 
chosen here, the conditional density of the state 
given the measurements is the natural statistical 
distribution of interest. The complete conditional 
density is difficult to calculate exactly, however, 
except for well-known simple systems, such as when 
f  and g  are linear, and 0,  and v w x  are normally 
distributed. In this case the conditional density is also 
Gaussian with mean and covariance provided by the 
well-known Kalman filter. When f and g  are 
nonlinear, however, the conditional density is not 
Gaussian, and obtaining a complete solution is 
generally impractical. Moreover, when state 
estimation is used as part of a feedback control 
system, the state estimator must meet other 
requirements. The estimate must be found during the 
available sample interval of the system as each 
measurement becomes available. The on-line 
requirements provide further limitations on what is 
achievable in state estimation. 
 
This paper discusses two types of estimators for use 
in industrial process applications: Kalman Filter type 
of nonlinear filters and Moving Horizon Estimators 
(MHE). The discussion is based on the author’s 
experience from implementing these estimation 
techniques in industrial applications. 
 
 

2. KALMAN FILTER TYPE OF NONLINEAR 
FILTERS 

 
 
2.1 The Extended Kalman Filter 
 
The filtering problem is to determine an estimate of 
the state |ˆ ˆ( )k k kt =x x  at time kt .  The basic Kalman 
filter algorithm, which is an optimal minimum 
variance estimator, is derived for linear systems. The 
theory is extended to nonlinear systems with well-
defined first-order derivatives in the Extended 
Kalman Filter (EKF) algorithm, which is based on 
first order Taylor approximations of state transition 
and observation equations around the estimated state 
trajectory. The EKF algorithm consists of a 
prediction part where the a priori state estimate 

| 1ˆ ( )k k kt − =x x  is determined from (1) by propagating 
the state estimate 1| 1 1ˆ ˆ( )k k kt − − −=x x at time 1kt −  and the 
mean process noise 1k −v  through the nonlinear 
model f . The a priori predicted measurement ky  is 
then calculated from (2) based on the a priori state 
estimate kx and the mean of the measurement noise 

kw . In the measurement correction part of the EKF 
algorithm the a posteriori state estimate is calculated 
as 

 
 ˆ ( )( )k k k kk= + −x x K y y  (3) 
 
where ky is the measurement vector at time kt   and 

( )kK  is the Kalman filter gain matrix. ( )kK  is 
calculated from the process noise covariance 1k −V , 
the measurement noise covariance kW , the a priori 
state covariance estimate 1k −X , and from the partial 
derivatives of  f  and g  in (1) and (2) with respect to 
the stochastic variables. Many variations on the same 
theme have been proposed such as the iterated EKF 
and the second-order EKF (Gelb, 1974).  
 
Of the nonlinear filtering methods, the EKF method 
appears to be the most widely applied method in 
various industrial applications. The reason for the 
popularity of this method is assumed to be due to its 
relative simplicity and demonstrated effectiveness in 
handling many nonlinear systems with reasonable 
use of computational resources. However, there are 
also some problems with the EKF, such as the 
inability to accurately incorporate physical state 
constraints. Such constraints generally have to be 
enforced through simple projections of the a 
posteriori state estimate in (3). Other problems are 
due to the use of differentiation to determine the 
linear system matrices used for calculating state 
covariances and the Kalman filter gain. The EKF can 
easily fail due to non-existence of the partial 
derivatives in certain singular points of the state 
space (Schei, 1997), and even if the derivatives exist 
they may lead to poor approximations in terms of 
mapping the mean and the covariance of the state 
probability density distribution through the nonlinear 
functions f  and g . 
 
 
2.2 Sigma Point Kalman Filters 
 
Recent developments in dynamic filtering are the 
Sigma Point Kalman Filters (SPKFs). Like the basic 
Kalman filter, the SPKFs seek to determine a state 
estimate that minimizes the l2-norm of the residuals. 
The SPKF technique differs from the basic Kalman 
filter in the estimate and covariance propagation 
prior to determining the a posteriori state estimate at 
the time of the measurement update. The differences 
lie in that the SPKFs do not linearize the dynamic 
system for the propagation, but instead propagate a 
cluster of points centered around the current estimate 
in order to form improved approximations of the 
conditional mean and covariance. The sigma points 
are chosen deterministically, for example as points 
on a selected covariance contour ellipse. A particular 
advantage with the SPKF approach is that these 
filters do not require knowledge or existence of the 
partial derivatives of the system dynamics and 
measurement equations. SPKFs have the additional 
advantage over the basic Kalman filter in that they 
can easily be extended to determine second-order 
solutions to the minimum l2-norm measurement 
update, which increases the estimation accuracy 
when the system and measurement equations are 
nonlinear. 
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The First-Order (DD1) and Second-Order (DD2) 
Divided Difference Filters (Nørgaard, 2000) are 
examples of SPKF-class estimators; other examples 
can be found in Julier et al. (2000, 2004) and Ito et 
al. (2000). The Divided Difference Filters are 
generalizations of the filter introduced by Schei 
(1995, 1997). 
 
 

3. MOVING HORIZON ESTIMATION 
 
 
3.1 Full Information Estimator 
 
The full information estimator is derived by 
maximizing the joint probability distribution for a 
trajectory of state values 0{ , , }Tx x… , given a 
sequence of measurements 0{ , , }Ty y… . It can be 
shown (Haseltine and Rawlings, 2003) that if the a 
priori state estimate 0x  and the process and 
measurement noise sequences 0 1{ , , }T −v v… , 

0{ , , }Tw w…  are all normally distributed and 
independent stochastic variables, the full information 
estimator for the system in (1), (2) can be formulated 
as a least-squares optimization: 
 

 
0

1
1 1

0, , 0 0

min ( )
T

T T
T T

T k k k k k k
k k

−
− −

= =

Φ = Γ + +∑ ∑x x
x v V v w W w

…
 (4) 

 

 1
0 0 0 0 0 0where   ( ) ( ) ( )T −Γ = − −x x x X x x  (5) 

 

kV  and kW  are covariance matrices for the process 
and measurement noise variables kv and kw , and 

0X is the covariance matrix for the a priori state 
estimate 0x . The size of the problem in (4)-(5) grows 
as new measurements become available.  
 
 
3.2 Arrival Cost and Moving Horizon Estimator 
 
To overcome the computational limitations of the 
full information estimator, the problem is 
reformulated over a fixed-size estimation window of 
the N last measurements: 
 

 
, , 

1
1 1

1

min ( )

     

T N T
T T N T N

T T
T T
k k k k k k

k T N k T N

−
− −

−
− −

= − = − +

Φ = Φ

+ +∑ ∑

x x
x

v V v w W w

…

 (6) 

 
In the Moving Horizon Estimator (MHE) (Rao et al., 
2003) the problem in (6) is solved approximately and 
repeatedly at each sampling time subject to the 
model in (1)-(2), constraints in the state estimates, 
and possibly constraints on the process and 
measurement noise. In order to ensure feasibility of 
the optimization problem, constraints on the 
measurement noise should, however, generally be 
avoided. The arrival cost, ( )T N T N− −Φ x , summarizes 
the past information up to the start of the estimation 
window. The arrival cost can only be determined 
approximately, and the construction of this 

approximation is the key to preserving stability and 
performance of the MHE. Estimator divergence may 
result if the initial penalty biases old data by too 
strongly weighting the past estimates, while 
performance may suffer if the initial penalty neglects 
the old data by not sufficiently weighting them. 
Arrival cost is a fundamental concept in MHE 
because it allows the recasting of the full information 
problem as an approximate fixed horizon problem. 
An exact algebraic expression for the arrival cost can 
only be derived for linear, unconstrained systems 
under Gaussian assumptions (Rao et al., 2001). 
 
The statistically correct choice for the arrival cost is 
based on the conditional density of the state estimate 

|ˆT N T N− −x at sample T N− , given data up to sample 
T N− . One possibility is to use the a posteriori state 
covariance determined by the EKF or one of the 
SPKF estimators as the arrival cost and to weight 
deviations from |ˆT N T N− −x . This is a filtering scheme 
since the penalty in the arrival cost is based on past 
measurements only. A problem with this scheme is 
that it tends to introduce oscillations in the state 
estimates. A smoothing scheme, where the arrival 
cost is based on the conditional density of the 
smoothed estimate | 1ˆT N T− −x , given data up to sample 

1T − , will solve this problem but it will introduce 
other problems us discussed below. 
 
 
3.3 Reducing the Size of the MHE Optimization  
      Problem 
 
If it is assumed that the optimization problem in (6) 
is solved using a sequential approach, i.e. the 
integration of the process model equations is 
performed independently of the optimization in (6), 
the MHE optimization problem has x vn N n+ ⋅  
independent variables. This size of the optimization 
problem might be prohibitive for many applications. 
For models with a large number of states it is 
impractical to estimate the entire state vector T N−x  in 
(6), and most or all of the individual states will have 
to be fixed to |ˆT N T N− −x  or | 1ˆT N T− −x . This might lead 
to instability as pointed out above. However, stability 
problems can usually be prevented if the data 
window is sufficiently long. If the arrival cost is 
omitted from (6), the MHE optimization has vN n⋅  
independent variables. As is discussed below, in 
order to obtain zero steady-state deviations in all 
predicted output measurements, vn should at least be 
equal to yn , but for high estimator performance, 

vn should generally be 2 yn∼ . It is usually also 
desirable to choose a relatively short sampling 
interval and a long data window, particularly if the 
arrival cost is omitted. A feasible approach to reduce 
the number of independent process noise variables in 
(6) is to depart from the white noise assumption and 
parameterize the process noise sequence with a 
smaller number of independent parameters, e.g. the 
process noise is assumed to be constant for a number 
of consecutive sampling intervals. However, this will 
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deteriorate the performance of the estimator. Hence, 
designing an MHE application is generally a 
compromise between performance and 
computational requirements. 
 
 
3.4 Solving the MHE Optimization Problem 
 
The optimization problem in (6) can be solved by 
applying a sequential quadratic programming (SQP) 
algorithm and exploiting the structure to attain 
efficiency. The SQP algorithm is an iterative 
technique in which each step is obtained by solving 
an approximation to (6), in which the objective is 
replaced by a quadratic approximation and the 
constraints by linear approximations. Since (6) is 
solved repeatedly at each sample time, the initial 
estimates will normally be close to the optimal 
solution, and only a few SQP iterations are usually 
required at each sample time. By limiting the number 
of SQP iterations, the maximum computational time 
can be well defined and within the required time-
limit for the particular application. 
 
 
4. DEVELOPMENT OF ON-LINE ESTIMATION 

APPLICATIONS 
 
This section will review some issues related to the 
development of on-line estimation applications for 
control and optimization purposes. 
 
 
4.1 Model Development 
 
The starting point is model development, which 
should be directed by the particular application 
needs. The model is assumed to be based on first 
principles, and should incorporate the main process 
nonlinearities. It should, however, be carefully 
considered how far the first principles modelling 
should be followed. Often complex mechanisms, 
which are difficult to model with high degree of 
confidence, should be replaced by unknown 
parameters which are estimated from plant data. 
Also, the numerical properties of the model should 
be carefully considered. The model must be 
sufficiently smooth with respect to perturbations of 
the independent variables if MHE optimization 
calculations are based on sensitivities obtained from 
numerical differentiation. Also, if analytical 
derivatives are used, they should exist and be 
continuous for all possible states. Since the estimator 
is part of a real time system with limited time 
between samples, the maximum computational time 
for each sample should be well defined. Hence, it is 
advantageous if the underlying ODE or DAE system 
in (1) can be solved with a fixed integration time 
step. This time step is determined during application 
development. 
 
 
4.2 Process Noise Model 
 
A critical design issue is the choice of the process 
noise model in (1). This choice depends on which 
model parameters are chosen for on-line estimation. 

A standard approach to modelling of uncertain 
parameters is to augment the state vector x  with the 
uncertain parameters θ , and to model the time 
variation of these parameters as integrated white 
noise sequences: 
 
 1 1k k k− −= +θ θ υ  (7) 
 
The state kx and the process noise 1k −v  in (1) are 
augmented with kθ  and 1k −υ . The choice of which 
parameters to estimate should be guided by an 
identifiability analysis. Usually it can not be assumed 
that the process excitations fulfil certain persistency 
requirements in order to ensure convergence of 
parameter estimates. Hence, the parameter vector θ  
should normally be a set of  parameters which is 
identifiable from stationary data, and which do not 
require any particular excitations in order to obtain 
convergence. Typical choices are heat and mass 
transfer coefficients, kinetic parameters, etc. By 
carefully selecting a number of parameters nθ equal to 
the number of output measurements yn , zero steady-
state deviations in all predicted output measurements 
can normally be achieved.  
 
The process noise model in (7) is usually not 
sufficient to obtain small measurement prediction 
errors, and additional process noise variables should 
be introduced. In the choice of process noise it is, 
however, essential that the basic balance equations 
are not violated. Process noise variables can typically 
be added to heat transfer rates, mass transfer rates, 
reaction rates, etc., such that mass, component and 
energy balances are fulfilled. This is important in 
many applications, e.g. to maintain a critical 
stoichiometric ratio between components or if the 
energy balance is used to estimate the conversion in a 
batch reactor. A simple example is the modelling of 
heat transfer from the reaction mixture to the cooling 
system in an exothermal reactor: 
 
 1 , 1( )k r cw q kq h A T T v− −= − +  (8) 
 
 1 , 1k k h kh h υ− −= +  (9) 
 
In (8) and (9) q is the heat transfer from the reaction 
mixture, and r cwT T  are the reactor and cooling water 
temperatures, and h  is an overall heat transfer 
coefficient which depends on several factors such as 
mixing, viscosity of the reaction mixture, fouling, 
flow rate of cooling water, etc. In this example the 
heat transfer coefficient h  is modelled as integrated 
white noise. In addition, white process noise is added 
directly on the heat transfer rate q . It is assumed that 
the reactor temperature and the outlet water 
temperature from the cooling system are measured. 
With this choice of noise model, the estimator can be 
tuned such that the measurement prediction errors are 
small without introducing aggressive corrections of 
the estimated heat transfer coefficient. This is 
important in order to maintain good prediction 
capabilities when the model is used in an NMPC or 
on-line optimization application. The same principle 
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can be used for modelling uncertain reaction rates. A 
kinetic parameter can be modelled as integrated 
white noise. In addition, white process noise should 
be added to the calculated reaction rate. 
 
In applications where it is important to not violate 
basic balance equations, the MHE estimator has an 
advantage over Kalman filter type of estimators, 
since the balance equations can be fulfilled exactly, 
provided the stochastic model in (1) do not violate 
these balances and provided that the arrival cost is  
omitted such and T N−x  in (6) is fixed to |ˆT N T N− −x  or 

| 1ˆT N T− −x  as discussed above. This is not the situation 
when Kalman filter type of estimators are applied, 
due to the linearization approximations involved in 
the calculation of model state updates from the 
measurement prediction deviations in (3). However, 
analysis of some applications have shown that also 
Kalman filter type of estimators can be designed to 
fulfil mass and energy balances with relatively high 
accuracy. 
 
 
4.3 Process Output Measurements 
 
When developing estimation applications, the 
characteristics of process measurements which are 
available for use as output measurements y  in (2) 
are important. Available measurements are usually of 
the following types: continuous measurements which 
can be sampled with high sampling frequency; 
delayed measurements from various analytical 
instruments which are normally available at a fixed 
sampling rate; and manual laboratory measurements 
which are available at unequal intervals and with 
varying delays. The on-line estimation application is 
usually developed with a fixed basic sampling 
frequency. The continuous measurements will 
normally be available at each sample time while 
measurements from analytical instruments and in 
particular laboratory analyses are available at a lower 
and unequal rate. Both the Kalman filter type of 
estimators and the MHE estimator can easily be 
implemented to handle asynchronous measurements 
with arbitrary sampling intervals. In such an 
implementation, it must be determined which of the 
available measurements are valid at each basic 
sample time. This functionality is required also for 
the continuous measurements, because a system for 
on-line estimation should include validation of all 
process input and output measurements and u y in 
(1) in order to prevent outliers and faulty sensors 
from deteriorating the estimates.  
 
Handling of measurement delays is more involved, 
particularly in Kalman filter type of estimators. If the 
measurement delays are not more than a few 
sampling intervals, this delay can be incorporated in 
the model by augmenting the state vector with 
delayed measurements. Another possibility is to store 
the old input and output data, and re-run the Kalman 
filter from the time when the measurement sample 
was drawn from the process. However, for processes 
where manual laboratory measurements must be used 
to correct the on-line estimator, the MHE estimator is 

generally preferred. In the MHE estimator delayed 
measurements are included by entering the 
measurement value at the correct place in the data 
window, in accordance with the time the 
measurement sample was drawn from the process. 
This approach is, however, not without problems. As 
discussed by Rawlings and Bakshi (2006), it is 
generally preferred to determine the arrival cost by 
using a smoothing scheme instead of the filtering 
scheme. However, when using the smoothing scheme 
in combination with delayed measurements, the total 
weight of the delayed measurements will depend on 
when the measurements were entered into the data 
window. Another problem is that when results from 
laboratory analyses are entered manually by the 
operator, it should be possible to correct an erroneous 
input after it has been entered into the data window. 
Both of these problems are solved by using the 
filtering scheme. However, as explained by Rawlings 
and Bakshi (2006), the filtering scheme tends to 
introduce oscillations in the state estimates. This is a 
problem which is still not satisfactorily solved. 
 
 
4.4  Off-line Estimation of Constant Model 
       Parameters 
 
In (1)-(2) the parameter vector θ  is assumed to 
consist of uncertain and time varying parameters 
which are selected for on-line estimation. In addition 
there are usually a number of constant model 
parameters which are difficult to calculate exactly 
from first principles, and which should be estimated 
from logged process data during the application 
development. A feasible approach is to estimate a 
vector of uncertain but constant parameters η , such 
that the measurement prediction errors obtained from 
one of the recursive estimators are minimized, using 
an SQP optimization approach. The optimization 
problem will generally also include estimation of 
uncertain initial states 0x , corresponding to the start 
of the logged time series data used for the off-line 
estimation. These time series data should generally 
be obtained from excitation experiments which are 
designed to obtain sufficient identifiability of the 
parameter vector η . 
 
 

5. APPLICATION EXAMPLES 
 
A few application examples where on-line estimation 
techniques have been implemented on various 
industrial processes are briefly reviewed below. 
 
 
5.1 Suspension PVC Polymerization Process 
 
Vinyl chloride monomer (VCM) is polymerized in a 
140 m3 batch autoclave with cooling jacket and 
overhead reflux condenser to maximize cooling 
capacity. A simple sketch of the autoclave is shown 
in Figure 1. 
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Fig. 1. Autoclave for batch polymerization of PVC. 

VCM is polymerized by dispersing liquid 
monomer droplets and initiators in water under 
intense agitation. The heat of reaction is removed 
by the use of a cooling jacket and an overhead 
reflux condenser. 

 
A comprehensive model is developed which includes 
the reaction kinetics for this free-radical 
polymerization process, phase equilibria for the four-
phase suspension process, material balances and 
energy balances for the suspension, the cooling 
jacket and the reflux condenser. In order to optimize 
the operation of this process, in particular the amount 
of initiators and the temperature profile during 
polymerization, it is essential that the model is able 
to accurately predict the product quality, which 
depends on the polymerization history, as well as the 
heat of reaction and the available cooling capacity 
throughout the entire polymerization stage. In order 
to accurately predict the energy balance, three model 
parameters are assumed to vary during the batch. A 
multiplicative correction factor for the 
polymerization rate was introduced to account for 
inaccuracies in the kinetic model. Similar correction 
factors were used for the heat transfer from the 
suspension to the cooling jacket and for the heat 
transfer in the reflux condenser.  
 
A SPKF Kalman filter with 15 s sampling interval 
was designed for this application. Three output 
measurements are used for the estimation: the 
suspension temperature and the outlet cooling water 
temperatures from the jacket and the condenser. The 
on-line estimation of the three model parameters θ  
ensure integral action in the predicted temperature 
measurements. In addition a number of other 
parameters η  where estimated to fixed values during 
the application development. The on-line estimation 
is part of a nonlinear MPC (NMPC) application. The 
model is also used in a “run-to-run” optimization 
system (Schei et al., 2001), where the three time-
varying parameters are parameterized as functions of 
conversion. 
 

 
 
Fig. 2. Estimates of the overall heat transfer 

coefficient for the cooling jacket. Estimates from 
50 consecutive batches are shown as functions of 
conversion. 

 

 
 
Fig. 3. Estimates of the multiplicative correction 

factor for the polymerization rate. Estimates from 
50 consecutive batches are shown as functions of 
conversion. 

 
 

 
 
Fig. 4. Trend plot for estimated overall heat transfer 

coefficients for the reflux condenser (upper 
curve) and for the  cooling jacket (lower curve). 
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Fig. 5. Trend plot for estimated reaction heat (upper 

curve) and estimated cooling from condenser and 
jacket (lower curves). The reflux condenser is not 
used during the initial part of the batch. 

 
 
5.2 Phenol-formaldehyde Semi-batch Polymerization  
      Process 
 
Phenol-formaldehyde resole resins are produced in a 
68 m3 batch polymerization reactor with an internal 
coil system for reactor cooling and steam heating, 
and a reflux condenser for additional cooling. The 
resole resins are prepared by the reaction of phenol 
and formaldehyde, in the presence of sodium 
hydroxide and potassium hydroxide as the catalysts. 
Phenol and formaldehyde reacts through several 
possible reaction steps to form various methylolated 
phenols. The methylol phenols react further through 
condensation polymerization reactions to form resins 
with higher molecular weights. A model has been 
developed for this condensation polymerization 
process. The model includes: reaction kinetics for the 
various methylolation and condensation 
polymerization reactions; formaldehyde equilibria 
for aqueous solutions, hemiformal equilibria, and 
equilibria between the reactive ionized phenolic 
species and the corresponding unreactive neutral 
molecules; population balances for functional 
groups; and energy balances for the reactor and the 
cooling and heating systems. The resins are produced 
in semi-batch operations where formaldehyde and 
sodium hydroxide are charged to the reactor at 
several stages during a batch run. The reaction heat is 
high during parts of the batch, particularly during 
charging of formaldehyde and sodium hydroxide, 
and a powerful cooling system is required for this 
process.  
 
A SPKF Kalman filter with 2 s sampling interval was 
designed for this application. An MHE estimator has 
also been tested with good results. The output 
measurements used for the estimation includes: 
reactor temperature, flow rate of water in the cooling 
coil, temperature of outlet water from the cooling 
coil, and the reactor weight scale reading. A number 
of parameters are estimated on-line: two 
multiplicative correction parameters for the 
methylolation and the condensation reactions; overall 
heat transfer coefficients for the cooling coil and for 
the steam heating coil; charging rate parameters for 
some of the raw materials; and two parameters 
related to the flow characteristic for the cooling coil 

with control valve. This on-line estimation 
application is part of an NMPC application where the 
position of the cooling water control valve is 
controlled directly. The estimated charging rate 
parameters are used to predict future charging rates 
for critical raw materials. The various parameters are 
only estimated during periods with sufficient 
identifiability of the individual  parameters θ . E.g., 
the overall heat transfer coefficient for the cooling 
coil is not estimated during periods when the cooling 
water valve is closed.  
 
 
5.3 Alkylation Batch Process 
 
The production of X-ray contrast medium involves 
many batch operations. One of the last steps in the 
primary production is alkylation of substance Y to 
form the final basic substance P. A reactor vessel is 
loaded with a solvent and sodium hydroxide (NaOH) 
in which the solid Y is dissolved. The alkylation 
reaction is initiated when the alkylation agent A is 
added. The reaction is exothermic and a temperature 
control system maintains the temperature at the 
desired setpoint.  
 

TC

TC

Agent A NaOH 

 
 
Fig. 6. Reactor vessel for alkylation batch process. 
 
For this particular process it is important that the 
reaction rate follows a nominal trajectory. If the 
reaction proceeds too fast, too much by-product (W) 
will be formed, while if the reaction is too slow, the 
batch schedule is violated. The reaction rate is 
adjusted by adjusting the pH. The pH and the 
reaction rate are increased by adding sodium 
hydroxide, while pH and reaction rate are decreased 
by adding the alkylation agent A. These additions are 
the manipulated variables and are small compared to 
the initial amounts. The pH is also affected by the 
initial amount of Y and other components. A 
dynamic model including mass balances for the 
various chemical components is developed, and the 
kinetic parameters are fitted to data from more than 
50 batches. The energy balance is not modelled for 
this application, and the reaction temperature is a 
measured input to the kinetic model. 
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During the course of the reaction, samples are taken 
at two different instances and the concentrations of Y 
and W are analyzed, in addition to the pH. Only 
when the results of these analyses are available, 
corrective actions are implemented on the process.  
In addition, an extra analysis is taken at the end of 
the batch. An NMPC application is designed to 
control the concentrations of Y and W at their set-
points and within constraints at the final batch time. 
Reducing the batch time is not an issue for this 
process. 
 
A full information estimator is designed for this 
application. Hence, the length of the data window, T  
in (4)-(5), increases throughout the batch, from zero 
up to the total batch time. Uncertainties are ascribed 
to the initial conditions 0x . The initial amounts of Y, 
NaOH and A are all measured, but still there are 
uncertainties in the actual amount due to 
measurement errors and due to small contaminations 
of the agents. There is no process noise kv in this 
application, except some minor uncertainties related 
to the corrective actions taking place at two time 
instances during the batch. The output measurements 
include the analyzed concentrations of Y, W and pH, 
which is done twice during the batch. At these two 
time instances the uncertainties in the Y and W 
measurements are different. It is difficult to measure 
pH in this system so little weight is put this 
measurement. As the laboratory measurements 
become available they are inserted into the data 
window according to the time-stamp when the 
samples were taken from the process. In addition, an 
alternative technique for analyzing Y and W with 
much higher frequency based on NIR is also applied. 
However, the laboratory measurements are still 
required for calibration of the NIR measurements. 
These measurements were readily added to the full 
information estimator. This estimator is well suited 
for batch processes with scarce quality 
measurements, which are delayed and asynchronous, 
and where it is essential to achieve maximum use of 
the information content in the measurements. 
 
The figures below show filtered and smoothed 
estimates of the concentrations of Y and W as well as 
the pH. The laboratory measurements are indicated 
with small circles. 

 
Fig. 7. Filtered and smoothed estimate of the 

concentration of Y. The two curves are almost 
indistinguishable. 

 

 
Fig. 8. Logarithmic scale for estimated concentration 

of Y. Setpoint and minimum and maximum 
constraints for the final concentration of Y are 
indicated in the plot. 

 
Fig. 9. Filtered and smoothed estimate of the 

concentration of W. The two curves are almost 
indistinguishable. Setpoint and maximum 
constraint for the final concentration of W are 
indicated in the plot. 

 

 
Fig. 10. Filtered and smoothed estimate of the pH. 

The two curves are almost indistinguishable. 
 
 

6. CONCLUSIONS 
 
This paper discusses two types of algorithms for use 
in estimation applications based on first principles 
models: Kalman Filter type of nonlinear filters and 
Moving Horizon Estimators (MHE). The discussion 
is based on the author’s experience from 
implementing these estimation techniques in 
industrial process applications. After an introductory 
review of basic principles, some important design 
issues are discussed, such as: model development; 

0 0.2 0.4 0.6 0.8 1
10

10.5

11

11.5

12

12.5

13

time

pH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

time

C
on

c.
 o

f W

0 0.2 0.4 0.6 0.8 1

100

101

time

C
on

c.
 o

f Y

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

time

C
on

c.
 o

f Y

26



     

choice of process noise model and selection of model 
parameters for on-line estimation; use of 
asynchronous and delayed measurements; and off-
line estimation of fixed but uncertain model 
parameters. The design of an estimation application 
is typically done in an iterative procedure including 
model refinement and validation, choice of noise 
model, tuning of process and measurement noise 
covariances, estimation of constant model parameters 
as well as other design issues related to the specific 
choice of estimation algorithm. The paper ends with 
a review of some industrial applications. 
 
The main conclusion of this paper is that robust and 
reliable estimation applications based on first 
principles models of considerable complexity, and 
based on the current available theory, can be 
designed and implemented for use in an industrial 
environment. There are, however, still some issues 
which should be the focus of further research. One 
such specific issue is the problem related to the 
arrival cost in MHE estimation and the problems 
encountered when the arrival cost is based a filtered 
state estimate or a smoothed state estimate. A much 
wider area of further research is how to best solve the 
combined problem of the MHE optimization problem 
in (6) in connection with the integration of the 
underlying system of differential-algebraic 
equations. 
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