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Abstract:
Simulated moving bed (SMB) is a cost-efficient chromatographic technique em-
ployed for difficult separation tasks. SMB processes exhibit complex dynamics,
e.g., its hybrid nature due to the inlet/outlet port switches with nonlinearities and
delays. The novel feature presented in this work is the extension of the ′cycle to
cycle′ control concept to make use as manipulated variables, of the four sectional
flow rates and the switch time. Its effectiveness is demonstrated through two case
studies; the startup of a SMB unit under plant-model mismatch and the rejection
of a pump disturbance.
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1. INTRODUCTION

Simulated Moving Bed (SMB) is a continuous
chromatographic process to separate mixtures
into two fractions. The separation principle is the
different affinity of the components in the mixture
to the solid phase which moves countercurrently
to the direction of the fluid. The generation of
a real countercurrent flow between a solid and
a fluid phase is infeasible in practice, but it can
be overcome by a technical approximation of the
process, the SMB. The SMB consists of a loop
of fixed-bed columns where the fluid circulates in
one direction (Fig. 1). The desired countercurrent
flow is achieved by periodically switching the inlet
and outlet streams in the direction of the fluid
flow, which results in a ”simulated” countercur-

rent movement of the solid with respect to the
fluid. A detailed description and analysis of the
process can be found elsewhere (Mazzotti and
Morbidelli, 1997).
In recent years, SMB has been firmly established
in the areas of pharmaceuticals, fine chemicals
and biotechnology, because of its significant eco-
nomical advantages. SMB is currently gaining at-
tention for purification of species characterized
by low selectivities such as chiral molecules for
single enantiomer drug development (Juza and
Morbidelli, 2000).
Nevertheless, the full exploitation of the econom-
ical advantages of SMB has been hindered by
mainly two factors. On the one hand, regula-
tory agencies (FDA, EMEA) dictate increasingly
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Fig. 1. Scheme of a Simulated Moving Bed
(SMB) unit. The dashed lines indicate the
inlet/outlet positions after the first switch.

stricter regulations and hard constraints on the
purity and quality of chiral drugs. These require-
ments enforce the selection of operating conditions
that will guarantee their fulfillment under any
circumstances. In SMB practice and due to the
nature of the process, these regulations translate
into a conservative operation of the unit that
guarantees the necessary robustness, at the price,
of course, of sacrificing some productivity. On the
other hand, any optimization of the operation that
takes into account these facts will be limited by
the precision and accuracy of the parameters of
the mixture to be separated, i.e. the complete
nonlinear isotherm information, which is by itself
a very difficult and time-consuming task. So, the
regulatory issues together with the lack of accu-
rate data about the system lead to suboptimal
performances in industrial SMB applications.
Hence, the robust and optimal operation of the
SMB process is still an open problem. The full
economical potential of the SMB can be exploited
by using a proper feedback control scheme. Several
approaches have been proposed. For a detailed lit-
erature review please refer to (Erdem et al., 2004).
In general, the drawback of these approaches is
again, the need for accurate data about the sys-
tem.
Here, a modified version of the recently introduced
repetitive model predictive control (RMPC) method
is applied (Natarajan and Lee, 2000). The con-
trol scheme presented in this paper integrates the
optimization and control of the SMB, guarantee-
ing the fulfillment of product and process spec-
ifications, while optimizing the economics of the
process. A significant feature of the controller is
that only minimal information of the system has
to be provided, i.e. the linear adsorption behavior
of the mixture to be separated and the average
void fraction of the columns. Therefore a full char-
acterization of the system is no longer needed.
This work presents an extension of the ′cycle to
cycle′ control concept (Grossmann et al., 2007) in

order to make use of all five operating parameters
of the SMB unit, i.e. the four sectional flow rates
and newly, the switch time, as manipulated vari-
ables to optimize and control the process.

2. PROCESS DESCRIPTION

The description and modelling of the SMB process
considered in this work has been reported in pre-
vious works (Erdem et al., 2004). For the sake
of completeness, a short summary is given here.
A detailed description of the SMB process and
its working principle may be found elsewhere
(Mazzotti and Morbidelli, 1997).
The mixture of guanosine (A) and uridine (B) is
to be separated in a closed-loop four-section eight-
column SMB unit arranged in a 2-2-2-2 configu-
ration (Fig. 1). The dynamical model for simu-
lation of the SMB unit is obtained by intercon-
necting the dynamical models of each chromato-
graphic column. The single-column dynamics are
modelled with the equilibrium dispersive model
(EDM) and the adsorption behavior of both com-
ponents inside the columns is described by a linear
adsorption isotherm, with Henry’s constants HA

and HB . The mathematical model is completed
by considering the corresponding node balances
between the columns and the proper boundary
and initial conditions. The physical parameters of
the system under consideration are summarized
in Table 1.

Table 1. Physical parameters of the sys-
tem to be separated and the SMB unit

used for simulation.

Parameter V alue

Mixture to be separated Guanosine and Uridine

Mobile phase 5% ethanol in water

Stationary phase Source 30 RPC

Temperature, 23 ◦C

Henry’s constants Hplant
A

= 2.140

Hplant
B

= 1.316

Number of columns 8

Column distribution 2/2/2/2 Closed loop

Column diameter, 1 cm
Column length, 10 cm

Total packing porosity ε = 0.375

Theoretical plates per column 100

3. ′CYCLE TO CYCLE′ OPTIMIZING
CONTROL SCHEME

The core of the control concept is the integration
of the optimization and control of the SMB unit
(Erdem et al., 2004). The novel feature presented
in this work is the extension of the ′cycle to cycle′

control concept (Grossmann et al., 2007) to also
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make use of the switch time as a manipulated
variable. In this way, all five operating parameters
of the SMB unit, i.e. the four sectional flow rates
and the switch time, can be used to optimize
and control the process. A scheme of the control
concept is shown in Fig. 2.
The control problem is formulated as a con-
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Fig. 2. Scheme of the ′cycle to cycle′ control
concept.

strained dynamic optimization problem within
the RMPC framework. The productivity and sol-
vent consumption represent the cost function to
be optimized, while the hardware restrictions and
product quality specifications are imposed as con-
straints. The controller makes use of a simplified
′cycle to cycle′ SMB model to predict and opti-
mize the performance of the unit over a predefined
number of cycles, the so-called prediction horizon,
np. The simplified ′cycle to cycle′ SMB model
requires only the linear isotherm information, HA

and HB , and the average bed porosity of the unit,
εave. The solution of the optimization problem
yields a sequence of optimal control actions for
a chosen number of cycles, namely the control
horizon nc. This scheme is implemented according
to a receding horizon strategy, i.e. the first element
of the calculated optimal control actions sequence
corresponding to the current cycle is implemented,
and the remaining calculated optimal inputs are
discarded. The prediction horizon is shifted by one
cycle and as new measurements of the average
concentrations of both species in extract and raf-
finate are available and an optimization problem
based on the new estimate of the plant state is
solved. The new state estimate is calculated using
a Kalman filter. The measurements, optimization
and control actions are performed only once every
cycle, i.e. on a ′cycle to cycle ′ basis.

3.1 Simplified ′cycle to cycle′ SMB model

The model used by the controller is of paramount
importance for its performance. A detailed dy-
namic model of SMB would demand excessive
computation for on-line optimization. Therefore

a simplified linear time-invariant model of the
process is considered. A detailed derivation of
the model for control purposes has been reported
(Erdem et al., 2004; Grossmann et al., 2007).
For this work, the modelling procedure presented
in (Grossmann et al., 2007) is followed. The space
discretization of the system of partial differen-
tial equations (PDEs) describing the SMB unit
yields a system of ordinary differential equations
(ODEs). The ODE system is linearized with re-
spect to the four internal flow rates and the new
manipulated variable, the switch time t∗ around
a cyclic steady state concentration profile. This
allows the controller to predict the effect of the
switch time on the future performance of the
plant. The model takes the form

xk+1 = Axk + Buk x ∈ Rnx , u ∈ Rnu

yk = Cxk + Duk y ∈ Rny (1)

where k is the cycle index. x is the state vector
comprising the internal concentration profiles. u is
the input vector containing the internal flow rates
and the switch time. The average concentration
levels of both species at both outlet streams, con-
stitute the output vector y. nx, ny and nu indicate
the dimension of the state x and the number of
process inputs u and outputs y, respectively. x, u

and y are defined in terms of deviation variables.
A, B, C and D are the state space matrices of
the system.
The equations in (1) are used to derive along
the lines of RMPC, the simplified ′cycle to cycle′

model that constitutes the basis for the formula-
tion of the control problem. The RMPC formu-
lation is based on the assumption that possible
model prediction errors and the effect of distur-
bances on the plant output are likely to repeat due
to the periodic nature of the process, and therefore
the information of the past cycles can be used to
correct for model errors in the future cycles. We
refer to the available literature for the description
and implementation details of RMPC (Natarajan
and Lee, 2000; Grossmann et al., 2007).
It is relevant to note that RMPC was formulated
under the assumption of a fixed period duration.
Including the switch time as a manipulated vari-
able leads inevitably to the violation of this as-
sumption. Nevertheless, the ′cycle to cycle′ formu-
lation of the control problem allows to profit from
the advantages of RMPC for periodic process even
with a varying period duration.

3.2 Optimization problem

The economic objective considered in this work is
defined to maximize the feed throughput and to
minimize the solvent consumption. The decision
variables in the optimization problem are the

203



manipulated variables, i.e. the four internal flow
rates QI ...QIV and the switch time t∗. These are
constrained during the whole operation with lower
and upper bounds.

Qmax
j ≥Qj ≥ Qmin

j for j = I, ..., IV (2)

t∗max ≥ t∗ ≥ t∗min (3)

Furthermore, due to technical requirements, the
switch time t∗ is restricted to take only integer
values which results in a MILP formulation. The
required product specifications are enforced by
constraining the average purities P ave for each
cycle of the prediction horizon with a lower bound
Pmin.

P ave
E ≥ Pmin

E (4)

P ave
R ≥ Pmin

R (5)

where PE and PR represent the purities in extract
and raffinate, respectively.
The cost function of the MILP is defined to maxi-
mize the feed flow rate QF and minimize the des-
orbent consumption QD over a given prediction
horizon np.

min
Q(nc), t∗(nc)




λD Q

(np)
D

︸ ︷︷ ︸

QI−QIV

−λF Q
(np)
F

︸ ︷︷ ︸

QIII−QII




 (6)

where Q
(np)
D and Q

(np)
F are the cumulative solvent

consumption and feed throughput, respectively,
over the prediction horizon np. λD and λF are the
weights assigned to each term in the cost function
and reflect the relative preference given to the
desorbent consumption minimization and the feed
throughput maximization, respectively. Q(nc) and
t∗(nc) are vectors consisting of the four internal
flow rates QI ...QIV and the the switch times t∗,
respectively, for the control horizon nc.
The problem comprised 369 variables, and 462
constraints. A commercial solver, ILOG CPLEX
9.0 was used to solve the optimization problem.
The maximum computation time was found to be
less than 0.1 s in a PC with a 3 GHz processor.

4. CONTROLLER PERFORMANCE

The results are presented in terms of the triangle
theory. For the sake of completeness, the main
concepts are summarized here. The separating
conditions are derived on the basis of the equilib-
rium theory model. The key operating parameters
are the ratio of the net fluid and solid phase flow
rates in each section of the SMB unit.

mj =
Qjt

∗ − V ε

V (1 − ε)
(j = I, ..., IV ) (7)

where V is the volume of one column and ε is
the total packing porosity. The necessary and
sufficient conditions for the complete separation
of a system characterized by a linear adsorption
isotherm are given by the following inequalities

HA < mI < ∞ (8)

HB < mII < mIII < HA (9)

0 < mIV < HB (10)

under the assumption that nonporous particles
constitute the solid phase. Given that the inequal-
ities (8) and (10) are fulfilled, i.e. the liquid and
solid phases, respectively, are fully regenerated,
then the position of the operating point in the
(mII ,mIII) plane allows to make a prediction of
the separation performance. Consider the differ-
ent regions that Eq. (9) defines in the bottom
Fig. 3. Note that the point on the (mII ,mIII)
plane that maximizes the feed throughput, that is
proportional to the difference between mII and
mIII , is located at the vertex of the complete
separation region. More details on the triangle
theory can be found elsewhere (Mazzotti and Mor-
bidelli, 1997; Mazzotti, 2006).
In the following case studies, two different sce-
narios are presented to illustrate the performance
of the controller. Section 4.1 shows how the con-
troller can find the correct operating conditions to
fulfill the specified minimum purities by manipu-
lating the four sectional flow rates and the switch
time regardless of the plant-model mismatch. Sec-
tion 4.2 shows how the controller responds to a
disturbance to recover the required purities and
to drive the operation of the plant to the new
optimal operating conditions, which were altered
significantly by the disturbance.
Table 1 and 2 report the parameters used for the
simulations and the development of the controller.

Table 2. Parameters used for the devel-
opment of the controller.

Parameter V alue

λF 20

λD 1

t∗,ref 120 s

mref
j=I...IV

2.28, 1.25, 2.29, 1.29

np 8 cycles

nc 1 cycle

P R
min = P E

min 99.0%

Henry’s constants Hmodel
A

= 2.248

Hmodel
B

= 1.303

Average packing porosity εave = 0.375
nx 26

nu 5

ny 4
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4.1 Case study 1: Plant-model mismatch

The controller is developed using information
from pulse injection under dilute condition, i.e.
only the Henry’s constants and the average poros-
ity. However, it is common to have uncertainties
and errors in these measurements. Besides, tem-
perature deviations, plant dead volumes and aging
of the solid phase affect the retention behavior of
the species. This may lead to a difference between
the actual Henry’s constants characterizing the
plant and the ones provided to the model. In order
to demonstrate the controllers performance under
such circumstances, the model is developed based
on Hmodel

A = 2.248 and Hmodel
B = 1.303 (triangle

with solid lines in Fig. 3), which are different from
the Henry’s constants characterizing the plant,
namely H

plant
A = 2.140 and H

plant
B = 1.316 (tri-

angle with dashed lines in Fig. 3), i.e., 5% smaller
and 1% larger, respectively. The plant was started
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Fig. 3. Controller action represented in the
(mII ,mIII) operating parameter space. Top:

Trajectory before the disturbance at cycle
150. Bottom: Trajectory after the disturbance

up at the reference flow rates and switch time
reported in Table 2, with initially clean columns
and the controller was switched on at cycle 1. The
startup point (P1 in Fig. 3) falls within the region,
where none of the outlets is pure. The controller
fulfills the outlet purities within 20 cycles (Fig.
4) and then takes the operating point to the ver-
tex of the triangle of complete separation regime

(P2 in Fig. 3) which is the theoretical optimum.
This demonstrates the capability of the controller
to fulfill the required purities and optimize the
operation under a plant-model mismatch scenario
using the flow rates and the switch time (Fig. 5).
The optimal operating conditions are held con-
stant until it is disturbed at cycle 151 (P3 in Fig.
3).
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Fig. 4. Average output purities for the controlled
plant over cycles.
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Fig. 5. Internal flow rates in section II and III

and switch time t∗ implemented in the plant
for two different cases: Continuous lines, t∗

was used as manipulated variable. Dashed

lines, t∗ was fixed throughout the operation.

4.2 Case study 2: Disturbance rejection

This case study addresses one of the common dis-
turbances in a SMB unit, namely the malfunction-
ing of a pump during the steady state operation
of the unit. The results are shown in the second
part of Fig. 4, between cycle 151 and 250. The
steady state operation at cycle 151 was disturbed
by increasing the flow rate delivered by the pump
before section I by 5%, thus affecting the rest
of the sections as well. Note that this change is
unknown to the controller, and it only realizes the
disturbance from the measurements. The distur-
bance increases the flow rate in all four sections,
which can be represented in the mII −mIII plane
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as a shift of the operating point up to the right (P3
in Fig. 3). This point lies in the pure extract region
making the purity of extract and raffinate increase
and decrease, respectively. The bottom part of
Fig. 3 shows the operating trajectory after the
disturbance and how the controller brings back
the operating point to the vertex of the complete
separation region (P4 in Fig. 3) in order to fulfill
again the minimum specified purities and opti-
mize the performance. It is interesting to observe
how the controller, in order to recover as fast as
possible the low raffinate purity, first approaches
the complete separation region until it reaches the
border. Once the minimum purity of the raffinate
has been fulfilled, the operation is optimized by
moving the operating point towards vertex of the
triangle. In this way, the controller manages to
reject the disturbance and the operation reaches
a steady state that fulfills the requested product
specifications.
For comparison, a further run under was made,
keeping the switch time fixed throughout the op-
eration of the plant. The same conditions and
optimization problem were considered in this case.
For the interpretation of these results note that
the productivity is proportional to the feed flow
rate QF = QIII − QII and inverse proportional
to the switch time for constant purities, i.e. when
mj ∝ Qjt

∗ is constant. Fig. 5 shows that the flow
rates in sections II and III are lower when the
switch time is fixed. This translates into a lower
productivity than with variable switch time, when
keeping the purities constant.

5. DISCUSSION AND CONCLUSIONS

In this study, an extension of the ′cycle to cycle′

control concept developed earlier (Erdem et al.,
2004; Grossmann et al., 2007) has been presented.
This extension allows the controller to make use
of the full set of operating parameters, i.e. the
four internal flow rates and the switch time, to
control and optimize the unit. Our control scheme
is formulated within the framework of MPC, thus
providing the possibility to contemplate any eco-
nomical objective function or include any type of
process or product requirement in a clean and
straightforward manner.
Incorporating the switch time as manipulated
variable implies the violation of the basic as-
sumption of constant period length in RMPC
(Natarajan and Lee, 2000). Nevertheless, the
′cycle to cycle′ formulation constitutes a way to
overcome this limitation that is restrictive for
cyclic processes, where the period length is an
important manipulated and optimization variable.
Motivated by the future experimental implemen-
tation of this approach and considering the soft-
ware restrictions in our laboratory plant, the

switch time was restricted to be an integer value.
This led to solving MILP when optimizing the
SMB unit at every cycle, contrary to the LP
formulation presented in (Grossmann et al., 2007).
This approach had been mentioned in the lit-
erature, though derived from the idea of mod-
elling SMB as a hybrid system (Natarajan and
Lee, 2000). In our formulation and from a concep-
tual point of view, this constraint is not necessary
and can be relaxed to allow the switch time to be
continuous.
The performance of the controller to find the op-
timum predicted by the triangle theory has been
illustrated through two case studies. The results
have shown that the controller can assure the
product quality and optimize the performance of
the plant in terms of maximum feed throughput
and minimum desorbent consumption despite un-
certainties in the system parameters and major
disturbances in the SMB operation.
The flexibility and potential of this controller
resides in its ability to rely only on the con-
centration of each solute at the outlet streams,
averaged over one cycle, as feedback information.
The ′cycle to cycle′ formulation does not only
allow an enhancement in the set of manipulated
variables, but provides the flexibility to apply the
controller to a wider range of separation tasks
which will be studied in the future.
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