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Abstract: Membrane filtration processes are often operated cyclically with alter-
nating filtration and backwashing phases. Typically, fixed values of the controls are
employed, leaving much of the economical potential unexplored. In previous pub-
lications, a model-based run-to-run process control approach has been introduced,
in which the controls are optimized after each filtration cycle. This contribution
focuses on the experimental validation of the approach at a pilot-scale membrane
bioreactor for wastewater treatment. Modifications to the approach and details on
its implementation are discussed. The controller yields very satisfying results with
respect to prediction quality, optimization results, and stability. Copyright c©2007

IFAC
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1. INTRODUCTION

Filtration and membrane filtration are established
technologies for the separation of particles, macro-
molecules or even dissolved molecules from flu-
ids. The driving force in the applications consid-
ered in the following is a transmembrane pres-
sure difference (TMP), pushing the feed fluid
and those particles through the membrane pores,
which are small enough to pass, and rejecting the
remainder. Typical particle sizes in these so-called
micro- and ultrafiltration applications range be-
tween nanometers and several hundred microns.

Due to membrane fouling, the filter efficiency de-
creases over time. Membrane fouling can have
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multiple causes, e.g. filter cake and biofilm for-
mation, anorganic scaling, concentration polariza-
tion, and pore blocking. During process operation,
there are two main approaches to limit membrane
fouling. Firstly, cross-flow along the membrane
surface reduces several fouling effects. The cross-
flow typically contributes most of the operational
cost. Secondly, the flow direction through the
membrane is periodically reversed, such that the
membrane pores are flushed with permeate. This
backwashing causes loss of product and produc-
tion time and leads to a a cyclic process behav-
ior with alternating filtration and backwashing
phases.

State-of-the-art process control for filtration pro-
cesses usually employs fixed values for the con-
trols, which are based on experience and heuris-
tics, and which are only adjusted to meet the
required net flux

Jnet =
Jf · ∆tf − Jb · ∆tb

∆tf + ∆tb
. (1)
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The manipulated variables (controls) are the per-
meate and the backwashing fluxes Jf and Jb and
the filtration and backwashing durations ∆tf and
∆tb, respectively. A further manipulated variable
is the cross-flow intensity uc.

The reason for the rather simple control strategies
lies in the high process complexity. It is character-
ized by the periodic change between filtration and
backwashing, the drift of the membrane perme-
ability due to irreversible membrane fouling, and
the typically non-steady-state operation. Further-
more, only very limited measurement information
is available in industrial installations.

In previous publications (Busch and Marquardt,
2006; Busch et al., 2007), a model-based control
approach is proposed to operate the filtration
process at its economical optimum at every point
in time while regarding safety constraints despite
these challenges. As will be seen, the approach
comprises elements of different concepts such as
dynamic real-time optimization (D-RTO), nonlin-
ear model predictive control (NMPC), and run-
to-run control. An economic objective function is
considered as in D-RTO, and the estimation and
control problems are solved in a moving horizon
fashion as in NMPC. Since the most characteristic
feature is the exploitation of the cyclic process
behavior, it is however most related to the concept
of run-to-run control.

So far, the controller has been validated in sim-
ulation studies, revealing a large savings poten-
tial as compared to conventional plant operation.
This contribution addresses the implementation
and evaluation of the approach at a pilot-scale
membrane bioreactor for municipal wastewater
treatment. Section 2 briefly reviews the process
model and controller design and discusses neces-
sary modifications related to the plant characteris-
tics. The controller’s implementation at the plant
and its performance are presented and discussed
in Section 3.

2. RUN-TO-RUN CONTROL OF MEMBRANE
FILTRATION IN WASTEWATER

TREATMENT

In run-to-run process control, optimal setpoints
for the controls are computed by the run-to-run
controller between two runs (or cycles), and these
setpoints are realized by PID-type controllers dur-
ing the run (del Castillo and Hurwitz, 1997). For
the filtration systems treated in this paper, a very
general problem formulation is required, which
accounts for nonlinear, dynamic process models
and constraints and also for the fact that each
cycle is divided into a filtration and a backwash-
ing phase. The generic problem formulation as

well as the derivation of a controller for mem-
brane bioreactors has been presented by Busch
and Marquardt (2006). The equations describing
the process model and the resulting run-to-run
controller are briefly revisited in the following.
A focus is on those modifications, which reflect
the requirements of a real plant installation as
compared to simulation scenarios.

2.1 Process model

The model proposed in the following is based
on simple descriptions of the main phenomena
of membrane filtration processes. The transmem-
brane pressure difference ∆p is described using
Darcy’s law,

∆p = J · η · R , (2)

where J is the flux, η is the fluid viscosity, and R

is the membrane resistance. While J is a manip-
ulated variable, η depends on the feed suspension
properties. As the TMP is assumed to be measur-
able, Eq. (2) represents the system’s output equa-
tion. The resistance needs to be described by state
equations for the filtration and the backwashing
phase.

2.1.1. Filtration phase During a filtration phase,
the membrane resistance Rf is described by

dRf

dt
= m · Jα

f · uβ
c , t ∈ [t0, tf ] , (3)

Rf (t0) = R0

f , tf = t0 + ∆tf . (4)

R0

f is the initial membrane resistance, and t is
the time. Assuming that the filtration flux Jf

and the cross-flow intensity uc are approximately
constant, a linear increase of membrane resistance
results. It describes the cake layer formation,
which is the dominating effect on this timescale
and which shows a strong dependence on the flux
and on the cross-flow. m, α, and β are model
parameters. Since in the following case study
the cross-flow is realized by an intermittently
operated air stream injected at the bottom of the
membrane modules, the cross-flow intensity uc is
defined as

uc = Q ·
ton

ton + toff
, (5)

where Q is the air flow, and ton and toff are
the periods with the aeration turned on and
off, respectively. In the following, Q and ton are
assumed to be constant, and toff replaces uc as
the manipulated variable.

2.1.2. Backwashing phase In the controllers
presented in previous publications, a model for the
backwashing phase is included. However, during
implementation at the plant it had to be realized
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that the quality of the plant measurement data
is not sufficient to identify the proposed model.
The reason lies in the high measurement noise,
the unmodeled ramp-up of the pumps, and the
comparatively short backwashing duration ∆tb.
It was decided to exclude the backwashing model
and consequently to remove the backwashing flux
Jb and the backwashing duration ∆tb from the
vector of optimized variables. Instead, they are
determined based on heuristics according to

Jb = Jf , ∆tb = ∆t∗b , (6)

where ∆t∗b is a fixed duration of the backwash-
ing phase. The loss of controller performance is
limited, as the filtration phase lasts considerably
longer than the backwashing phase, and the de-
grees of freedom during backwashing are limited:
The aeration is constantly turned on to remove
the detached filter cake from the membrane mod-
ule, and the time ∆t∗b is the estimated time re-
quired to fulfill this task. Still, the loss of product
and production time reduces the process efficiency
by up to 15% in the case study application. The
reduction of this loss is therefore subject of current
research.

2.1.3. Cost function and constraints The oper-
ating cost, that can be influenced by the process
control system, are the cost for electrical energy
to provide the TMP (Ep) and the cross-flow (Ec)
and the cost for membrane replacement (Er). The
cost model for the TMP is given in Busch and
Marquardt (2006), and the cost for the cross-flow
are described based on standard models for the
polytropic compression of air.

The cost for membrane replacement Er cannot
be described as straightforwardly, since no rigor-
ous model describing the membrane lifetime de-
pending on the manipulated variables is available.
However, qualitative process insight allows for an
empirical correlation for membrane replacement
cost. It is known that a strong increase of the TMP
in one filtration phase indicates an overstraining
of the membrane, and that the longer a filtration
phase lasts, the more the reversible resistance
turns irreversible. Therefore, the TMP increase in
each phase is penalized, and the penalty increases
exponentially with time according to

Er = ξ1 ·
(

∆p (tf ) − ∆p (t0)
)

· e
∆tf

ξ2 . (7)

ξ1 and ξ2 are tuning parameters. The overall
process cost φ for one cycle is given by

φ = Ep + Ec + Er . (8)

Constraints are formulated for the minimum and
maximum values of the TMP and for the manip-
ulated variables u, where u = [Jf ,∆tf , toff]

T
:

∆pmin ≤ ∆p ≤ ∆pmax , umin ≤ u ≤ umax . (9)

2.2 Run-to-run controller

In industrial practice, only the TMP across the
membrane modules is measured. In order to make
the proposed approach widely applicable, it is
therefore assumed that only this TMP is available
as measurement. The unknown model parameter
m and the initial state R0

f are estimated at the
end of cycle k from the measurement data of cycle
k by solving a classical least-squares optimization
problem according to

min
R0

f
,m

n
∑

l=1

1

2
(∆p̃l − ∆pl)

2
(P1)

s.t. ∆pl = Jf · η · Rf,l , (10)

Rf,l = R0

f + m · Jf
α
· uc

β · tl , (11)

tl ∈ [t0, tf ] , l ∈ {1, . . . , n} . (12)

n is the number of discrete TMP measurements
∆p̃l and simulated TMP samples ∆pl. The index
cycle k is omitted for simplicity here and in the
following. Note that Eq. (11) is the analytical, dis-
cretized solution of Eq. (3) for constant filtration
flux Jf and cross-flow intensity uc. Since in reality
these properties are not perfectly constant, their
mean values after the ramp-up time of the pumps
are introduced as Jf and uc, respectively. This
inaccuracy is small against the measurement noise
and simplifies the estimation problem.

Problem (P1) gives estimates of R0

f and m on the
data from the previous cycle k as in classical run-
to-run control. However, α and β are not simulta-
neously identifiable on the data of one cycle alone.
This is due to the so-called dual control problem

and can be perceived from Eq. (3). For a constant
filtration flux Jf and cross-flow intensity uc, only
one of the parameters m, α, and β is identifiable.
Therefore, α and β are estimated from data on
larger estimation horizons, e.g. on the three last
cycles. The Hessian matrix of the estimation prob-
lem is used to estimate the certainty with which
α and β can be estimated from the given set of
data. Only if the certainty is sufficiently high,
the parameter values are adopted. The reader is
referred to Busch et al. (2007) for details.

The obtained parameter values are used in the
optimization problem for cycle k + 1, as it can
be assumed that the process behavior does not
change drastically between two cycles. The opti-
mization problem is stated as

min
Jf ,∆tf ,toff

φ (P2)

s.t. ∆p = Jf · η · Rf , (13)

Rf = R0

f + m · Jα
f · uβ

c · t , (14)

uc = Q ·
ton

ton + toff
, (15)

Jnet =
Jf · ∆tf − Jb · ∆tb

∆tf + ∆tb
, (16)
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Fig. 1. Inflow-proportional operation of the controlled system for one day

Jb = Jf , ∆tb = ∆t∗b , (17)

∆pmin ≤ ∆p ≤ ∆pmax , (18)

umin ≤ u ≤ umax , (19)

t ∈ [t0, tf ] , tf = t0 + ∆tf . (20)

φ is defined according to Eq. (8). Problem (P2)
results in optimal setpoints for Jf , ∆tf , and toff
for the next cycle k + 1.

The algorithm is implemented as follows. Since
it is not necessary to wait for the backwashing
data, the backwashing phase in cycle k is used
to import the filtration data and to solve the
parameter estimation and setpoint optimization
problems (P1) and (P2). Working with real plant
data requires a preprocessing step to account for
missing data, outliers etc. Robustness against all
possible types of errors is vital for the success-
ful implementation of the controller. When useful
data is available, the parameter estimation is per-
formed, and with the updated model, the optimal
setpoints for the manipulated variables Jf , ∆tf ,
and toff are computed. They are communicated to
the process and realized in cycle k +1. In the rare
case that the computation takes longer than the
backwashing phase in cycle k, there is some delay
in the implementation of the new setpoints, and
cycle k+1 is initiated with the old setpoints, until
the new setpoints are available.

3. EXPERIMENTAL STUDY

The proposed run-to-run controller is imple-
mented at a membrane bioreactor located at Sim-
merath, Germany, which is operated by KOCH
Membrane Systems GmbH. The pilot plant treats
a bypass from the conventional municipal waste-
water treatment plant Simmerath. The pilot plant
includes a mechanical pretreatment to remove
larger particles, denitrification and nitrification
basins for biological degradation, and a basin with
three membrane modules. The membranes sep-
arate the biomass from the purified water. The

biomass concentration is around 13 g/l, and typ-
ical particle sizes are in the range of 1 to 100
microns. For the case study presented here, a
PURON hollow fibre module with 29 m2 filtration
area is employed.

The process is operated via a WinCC (Siemens)
platform. The run-to-run controller is imple-
mented in MATLAB (The MathWorks), which
has been installed on the same PC as WinCC.
No additional sensors were installed, such that the
cost for implementing the controller were low.

The rather simple communication architecture re-
quires a further delay of one cycle in the com-
munication of the measurement data, such that
the model parameters are adapted with one cy-
cle delay. These delays have not caused stability
problems or a noticeable loss of performance. Still,
at some cycles no useful measurement informa-
tion was available, such that the setpoints from
the previous cycle were used again for the next
cycle. The implementation of an OPC-based com-
munication infrastructure in the near future will
eliminate these problems.

Different choices for the tuning parameters ξ1 and
ξ2 in Eq. (7) are evaluated in offline simulation

studies. Heuristically, they are set to ξ1 = 1m
3

s

and ξ2 = 1200 s for the following online studies.
∆t∗b is fixed to 20 s, and the maximum aeration
pause is 80 s. The remaining constraints on the
manipulated variables and the TMP are not active
and their values are omitted for brevity.

3.1 Results

First, the controlled system’s stability is evaluated
in an uninterrupted one day run. The net flux
across the membrane Jnet is chosen proportional
to the actual plant inflow. Between two filtration
cycles, the controller updates the model and de-
termines the optimal setpoints for the filtration
flux Jf , the phase duration ∆tf , and the aeration
pause toff. Fig. 1 depicts the net flux Jnet and the
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Fig. 2. Values of the manipulated variables during the operation with fixed setpoints (grey) as compared
to the operation with the run-to-run controller (black)

resulting TMP during the filtration phases. It is
observed that the TMP follows the trend of the
net flux, which is expected since the TMP rises
with the filtration flux (Eq. (2)). After about 8 h,
a rain fall leads to a strong increase in the plant
inflow, which in turn leads to a high net flux and
a high TMP. Stable plant operation is achieved in
spite of these strong inflow variations.

Fig. 1 also shows two detailed TMP plots at
different net fluxes. It can be observed that at high
fluxes, the increase of TMP during each cycle is
severe (left). Following the heuristics introduced
above, this points to a high membrane strain. It
will be shown, that the reduction of membrane
strain dominates the control objective in such
a situation. At lower fluxes, the TMP increase
is smaller (right). It can also be observed, that
especially in the second half of the 1-day-horizon,
when the model parameters are properly adapted,
there is a tendency to choose higher filtration
phase durations at lower net fluxes.

Having ensured the controller’s reliability, its ef-
ficiency is compared to conventional plant oper-
ation. For this purpose, the membrane system is
operated at four different net fluxes Jnet, namely
10, 20, 30 and 40 l/h/m2. At each net flux, the
plant is first operated manually with fixed typ-
ical setpoints of the manipulated variables, and
afterwards employing the run-to-run controller.
The setpoints and the performance measures are
recorded for each operating point and operating
strategy as discussed in the following. The predic-
tion quality of the model is also examined, but the
results are not depicted here due to limited space.
The prediction quality is good, with a standard
deviation of the relative prediction error of 4%.

Fig. 2 depicts the mean values of the manipulated
variables at the different operating points and for
manual and controlled operation. The filtration
flux Jf increases with increasing net flux Jnet.
The backwashing flux Jb (not depicted) equals
the filtration flux according to Eq. (6). The run-
to-run controller always realizes a little lower
filtration and backwashing fluxes Jf and Jb and
longer filtration phase durations ∆tf as compared
to the fixed setpoints. This leads to less strain

on the membranes due to lower flux, yet also
to a lower backwashing frequency. This in turn
lowers the energy demand, since the aeration is
constantly turned on during backwashing, but is
only intermittently turned on during filtration.
The controller shortens the filtration phases at
high net fluxes, which implies a more frequent
backwashing and lower maximum TMP at the end
of each filtration cycle. The length of the aeration
pauses toff are comparable at high net fluxes, but
at lower net fluxes the controller strongly increases
the aeration pauses.

Fig. 3 shows the cost function values during op-
eration with fixed setpoints and with the run-to-
run controller. The cost function is separated into
energy cost (Ep +Ec) and membrane strain (Er).
During filtration with low net fluxes (10 and 20
l/h/m2), the controller operates the process at
comparable membrane strain, but with only about
50% of the energy consumption. This is mostly
due to the longer aeration pauses (Fig. 2).

At 20 l/h/m2, the overall objective function value
φ is lower with the fixed setpoints due to lower
computed membrane replacement cost Er. Con-
sidering that here membrane fouling is already
very low and that the interesting aspect is indeed
the minimization of the energy consumption, this
plant-model mismatch is found to be acceptable.

At higher fluxes (30 and 40 l/h/m2), the energy
consumption is only slightly lowered by the con-
troller as compared to the operation with fixed
setpoints. The aeration, contributing the largest
part of the energy cost, is at maximum in both
settings, and the remaining energy savings can be
attributed to the different values of the filtration
flux and phase duration (Fig. 2). However, in
these demanding operating conditions, the high
membrane strain is reduced by 40–50% by the
run-to-run controller (Fig. 3).

Note that these results are subject to the tuning
of the controller, i.e. the choice of the parameters
ξ1 and ξ2 in Eq. (7). Altering these parameters
allows to operate the membrane more conserva-
tively or aggressively with respect to membrane
strain, which in turn increases or decreases the
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energy demand, respectively. Although the depen-
dency of the optimization results on the tuning
parameters is nonlinear and different for each
operating point, the mean values obtained from
an offline parameter study give an idea of the
influence of ξ1 and ξ2. Fig. 4 shows the mean
change of the optimal setpoints of the manipu-
lated variables Jf , tf , and toff, when ξ1 or ξ2 are
increased by 1 %. For both of them, the increase
leads to lower filtration fluxes, longer filtration
phases, and shorter filtration pauses, implying a
more gentle filtration. It is obeserved that ξ1 has
a greater relative influence on the aeration, while
ξ2 has a relatively larger impact on the filtration
flux and duration. This allows for an independent
tuning of both parameters to obtain the desired
filtration characteristics.

3.2 Discussion

Due to a lack of appropriate models and long-
term experiments and the considerable process
uncertainty, it is not possible to state the overall

optimal operation policy over the lifetime of a
membrane module for each and every cycle. How-
ever, when compared to the industrial standard
policy of manual, heuristic operation, the run-to-
run controller presented here decreases the energy
consumption or the membrane strain by up to
50%. Low flux situations are exploited to save en-
ergy especially by reducing the aeration intensity.
In high flux situations, adapting the filtration flux
and phase duration leads to a substantial decrease
of the estimated membrane strain.

The results presented here can also be related to
the prominent concept of critical flux for mem-
brane bioreactors (Pollice et al., 2005). The con-
cept states that below a certain critical flux, no
or very limited fouling takes place. With respect
to the results shown here it can be argued that
during filtration above a critical flux, fouling is
strong, and the main control objective is to limit
the harmful fouling effects. During filtration below
the critical flux, fouling is small, and the controller
focuses on the minimization of energy consump-
tion. In the transition between the two regimes,
both objectives are similarly important.

4. CONCLUSIONS

A model-based run-to-run controller for mem-
brane filtration processes is developed. The key
idea is to optimize the available manipulated vari-
ables at each filtration cycle instead of employing
fixed setpoints. The controller requires only TMP
measurements. A specialized controller for sub-
merged membrane filtration in wastewater treat-
ment is derived from the general framework. It is
evaluated at a pilot plant. The controller is able to
predict the process behavior within small margins
of error. Depending on the required net flux, the
energy consumption or the estimated membrane
strain can be reduced by 40-50%. Additionally,
the operational safety is greatly increased by the
automatic adaptation of the filtration strategy to
changing operating conditions.
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