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Abstract: A multivariate statistical estimator of the product quality is developed for an 
industrial batch polymerization process producing a resin. It is shown that, for the 
purpose of quality estimation, the complex series of operating steps through which a 
batch is run can be simplified to a sequence of three estimation phases. For each phase, a 
PLS model for the estimation of the product quality is developed. Switching between one 
phase to the other one is triggered by easily detectable landmark events occurring in a 
batch. The performance of the resulting three-phase PLS estimator is very satisfactory.  
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1. INTRODUCTION

Batch processing is used to manufacture high added-
value goods, such as specialty chemicals and 
biochemicals, materials for microelectronics, and 
pharmaceuticals. With respect to their continuous 
counterparts, batch processes are easier to set up and 
require only limited fundamental knowledge of the 
underlying process mechanisms. In principle, the 
operation of a batch process is easy, because the 
processing recipe usually evolves through a series of 
elementary steps (e.g.: charge; heat-up/cool; mix; 
discharge) that can be easily carried out even without 
supervision, if the production facility is outfitted with 
a fairly large degree of automation. 
One key feature of batch processes is that, by 
properly adjusting the operating recipe, they can 
achieve a consistently high and reproducible quality 
of the product, in spite of changes in the raw 
materials and in the state of the equipment or of the 
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utilities. However, it is often the case that batch 
plants are poorly instrumented and automated, and 
may require intervention by the operating personnel 
to provide online adjustments of the operating recipe 
to avoid the production of off-spec products. In fact, 
with respect to product quality control, most batch 
processes are run in an open-loop fashion, because 
information about product quality is not available 
online, but is obtained offline from laboratory assays 
of few product samples. Because of the lack of online 
information on product quality, it is difficult to 
promptly detect shifts in quality and to counteract 
them by adjusting the operating recipe accordingly. 
Therefore, a quality control strategy for a batch 
process often reduces to the online control of some 
key process variables (those whose measurements are 
available online) and possibly to some midcourse 
intervention on the operating recipe to compensate 
for the shifts detected in the product quality 
measured offline. 
The performance of a batch process could be 
improved if accurate and frequent information on the 
product quality were available. Soft sensors (also 
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called virtual sensors or inferential estimators) are 
powerful tools for this task. They are able to 
reconstruct online the estimate of a quality variable 
from the measurements of some “secondary” process 
variables (typically, temperatures, flow rates, 
pressures, …), by using a model to relate the 
secondary variables to the primary ones. Developing 
a first-principles model to accurately describe the 
chemistry, mixing and heat-transfer phenomena 
occurring in a polymerization process requires a 
significant effort, and the resulting soft sensor may 
be computationally very demanding for online use. 
Data-driven soft sensors overcome these difficulties, 
and will be considered in this paper. 
In the last two decades, multivariate statistical 
techniques have proved to be excellent tools for the 
analysis and monitoring of processes where lots of 
process data are available (Kourti and MacGregor, 
1995). These techniques are able to compress the 
information contained in the available data down to a 
low-dimensional space that retains almost all of the 
original information embedded into the data. Within 
this space, it is possible to obtain a relationship 
between the (transformed) process data and the 
(transformed) quality data, so as to design 
computationally inexpensive online estimators. 
Several industrial applications of these techniques 
have been reported (Garcia-Muñoz et al., 2003; Yu 
et al., 2003; Kourti, 2005). 
In this paper we exploit one of these projection 
methods (namely, partial-least-squares regression; 
Geladi and Kowalski, 1986) to design a soft sensor 
for the online estimation of the quality of a resin 
produced in an industrial batch polymerization 
process. The process is characterized by a fairly large 
number of process measurements being available 
online. However, these variables are noisy, auto-
correlated and cross-correlated. Quality 
measurements are available offline, but are scarce 
and unevenly spaced in time. The operating 
procedure consists of a nominal recipe that is subject 
to several online adjustments made by the operators 
depending on the actual evolution of a batch. As a 
consequence, the batch duration exhibits a large 
variability. All of these features make each batch 
hardly reproducible, and the quality estimation a 
challenge.

2. THE PROCESS 

The industrial process we are considering is the batch 
polycondensation between 1,6-hexanediol and 
dodecanedioic acid, which produces a polyester resin 
(called resin #3180) with an average molecular 
weight of ~3500 kg/kmol. The reaction is carried out 
in a stirred tank reactor with a nominal capacity of  
12 m3, heated by dowtherm oil through an external 
coil. Several other resins are produced in the same 
reactor in different production campaigns. 
Besides the desired product, the polycondensation 
reaction leads to the formation of water, which must 
be removed from the reaction environment to 
promote the forward reaction. To allow for the 

removal of water, the plant is equipped with a packed 
distillation column (which is actually run in dry 
mode for the production of resin #3180), an external 
water-cooled condenser, and a scrubber. A vacuum 
pump allows to operate the plant under vacuum when 
needed. 
The measurements of 23 process variables are 
routinely collected online and recorded by a process 
computer every 30 s. These measurements include 
temperatures, pressures and valve openings in 
different sections of the plant. The product quality is 
defined in terms of two indices: the resin viscosity 
( ) and the resin acidity number (NA). However, 
quality measurements are not available online. 
Rather, product samples are taken manually (quite 
infrequently and irregularly, i.e. one sample each 1.5-
2 h, depending on the operators’ availability and on 
the actual evolution of the batch), and sent to the 
laboratory for analysis. The full analysis of a sample 
takes about 20 min. Product sampling is initiated 8-
10 h after a batch is started. Typical measurement 
accuracies are ~10% (NA) and ~8% ( ) of the 
reading. Each batch is run through a sequence of 
operating steps, most of which are triggered 
manually by the operators depending on the current 
values of the product quality measurements. A 
typical sequence of operating steps is as follows. 
Cleaning of the equipment and lines is done when a 
different resin has been produced in the preceding 
batch. Then, the reactants and additives are loaded. 
Dodecanedioic acid being a product of fermentation, 
its quality may change from batch to batch. Minor 
quality changes may be also experienced in the fresh 
hexanediol. 
During the reactor loading, the operators set on 
mixing and heating, and heat-up continues until the 
reactants reach a temperature of 202 °C. Because the 
dowtherm oil serves as the hot utility for several 
other reactors in the same production facility and the 
duty of the heating furnace is fixed, the oil 
temperature may well change from batch to batch. 
This may result in different durations of the heat-up 
period from one batch to another one. 
The temperature triggers the polycondensation 
reaction, hence water is generated and must be 
removed to improve the yield of resin. Water is 
generated as a vapor phase that leaves the reactor. 
Especially in the early stages of the batch, this vapor 
phase may contain significant amounts of 
hexanediol, which must be recovered. Therefore, the 
vapor phase leaving the reactor is treated in the 
following ways: i) by differential condensation, 
through which liquid hexanediol is recovered and 
recycled back to the reactor; ii) by total condensation 
in the condenser; iii) by washing and contact 
condensation in the scrubber. Switching from method 
i) to method ii) to method iii) is triggered by the 
measured values of  and NA in the reacting mass. 
Therefore, any delays in the sampling and subsequent 
analysis of the product may severely alter the time 
evolution of the batch. 
Vacuum is applied during the course of the reaction 
to improve the operation of the reactor and for safety 
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reasons. However, since one additional charge of 
fresh hexanediol and chain transfer agents is always 
loaded to the reactor while the reaction is 
proceeding, vacuum needs to be broken and then 
resumed when this occurs. 
When the end of the batch is approaching, the reactor 
temperature is increased to 220-230 °C. The batch is 
stopped when the product reaches the desired quality 
targets in terms of both NA and . At that time, the 
product is discharged. 
During the course of a batch, if NA and  are failing 
to approach the target values in the expected amount 
of time, further fresh material is charged to the 
reactor; this requires breaking and then resuming the 
vacuum. Following the operators’ jargon, this is 
known as “a correction” to a batch. Clearly, 
corrections are the way the operators act online to 
compensate for any disturbances affecting a run 
(changes in: quality/quantity of raw materials and 
additives; quality of utilities; state of the equipment). 
One single batch may experience from zero up to 
two corrections, depending on the operators’ 
judgment. More than one third of the batches 
undergo to corrections. 
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Fig. 1. Time trajectories of (a) reactor temperature 
and (b) reactor pressure for three different 
batches. 

The net result of this quite complex (and mostly 
manually driven) operating recipe is that, although 
the end-point quality of the resin usually falls within 
a very narrow range, the “internal” variability of the 
batches is very large. This, for example, translates in 

variable durations of the batches (the total batch time 
ranges between 40 and 70 h) and different shapes of 
the same process variable in different batches (Fig. 
1).
As was noted, the switching from one operating step 
to the subsequent one is triggered by the measured 
value of the resin viscosity and/or acidity number. 
However, because quality measurements are 
available quite infrequently, the switching may be 
substantially delayed, with the result of poor 
monitoring of the product quality and increase of the 
duration of a batch. Therefore, as a first approach to 
the design of a system for the online monitoring of 
the whole production process, the design of a soft 
sensor for the estimation of  and NA is considered, 
with the objective to make available online frequent 
and accurate estimations of the product quality 
indicators. 

3. PROPOSED ESTIMATION APPROACH 

The quality monitoring approach we have developed 
relies on the partial least squares (PLS) regression 
technique, which is shortly recalled before 
considering its application to the case under study. 

3.1 PLS regression 

PLS is a regression technique that allows to deal with 
an overload of process data and to relate them to 
quality variables. In particular, it is very effective in 
the treatment of highly correlated and noisy data. 
Let us suppose that a set of J process variables
measured on N samples are collected into a (N×J) X
matrix. Let us also assume that M quality variables 
are collected into a (N×M) Y matrix. All available 
data are properly centered and scaled before 
numerical treatment. 
PLS reduces the dimension of the X space by finding 
the set of latent variables (LV’s) explaining the 
variation in the process data (X) that is most 
predictive of the quality data (Y).
The X and Y matrices are decomposed as: 
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where },{min JNA , ta and ua are the score 
vectors, pa and qa are the loading vectors, and E and 
F are the residual matrices. The latent vectors ta are 
computed sequentially from the available data for 
each PLS dimension (a = 1, 2, …, A), such that the 
linear combination of the X variables defined by the 
latent variable  and the linear combination 
of the Y variables defined by the latent variable 

 maximizes the covariance between X and 
Y that is explained at each dimension, i.e. as latent 
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variables are added. Usually, a small number of LV’s 
is sufficient to extract the information from X and Y,
no matter how large the dimension of these matrices 
is. Cross-validation (Wold, 1978) can be used to 
determine the optimal number of LV’s. It should be 
noted that, while using the first few (say, two) LV’s 
may be sufficient for process monitoring purposes, 
all the dimensions determined by cross-validation are 
often needed when quality estimation is to be 
performed (MacGregor et al., 1994). 
When batch processes are considered, the estimation 
problem is complicated by the fact that the data 
matrices take the form of three-way arrays. PLS can 
be applied to such matrices by “unfolding” them to 
obtain two-way arrays of data (Nomikos and 
MacGregor, 1994). 
The dataset available for the process under study 
includes measurements of the process variables and 
of the quality variables from 28 batches. This dataset 
was split into two parts: 24 batches constitute the 
reference (i.e., calibration) dataset, while the 
remaining 4 batches represent the validation dataset. 
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Fig. 2. Variable-wise unfolding of the process and 
quality data matrices. 

The process data are collected in a three-way matrix 
X (Fig. 2). Each of the  columns of this 
matrix contains one measured process variable. Each 
row of 

23J

X corresponds to one of the 24I  reference 
batches. Time occupies the third dimension. 
Although the process variables are measured at a 

regular frequency, the duration of each batch is 
different, and this makes the shape of X “irregular”. 
Typically, 5500-6500 measurements of each process 
variable are taken during a batch.  
The arrangement of the Y matrix is similar. 
However, only 2M  columns are present, which 
correspond to the two quality variables to be 
estimated (  and NA). The third dimension of Y is 
scanned irregularly and with a much lower frequency 
than the one of the X matrix (only 15-20 midcourse 
quality measurements are usually available per 
batch). In the Y matrix, “time” refers to the time 
when a sample is taken, not to when the lab analysis 
becomes available.  
One simple method to deal with this kind of un-
synchronized data is to unfold the X and Y matrices 
according to the variable-wise method, as Fig. 2 
illustrates (Wold et al., 1998). The limitations of this 
unfolding method with respect to the batch-wise one 
are discussed by Kourti (2003). In order for the 
calibration matrices X and Y to have the same 
number of rows, only those process measurements 
that correspond to time instants where product 
samples are taken were included into the X matrix. 

3.2 Estimating the resin quality 

As was discussed in Section 2, the operating recipe 
for a batch results in a complex series of operations, 
most of which are subject to the operators’ manual 
intervention. Therefore, also owing to the intrinsic 
time-varying nature of the process, it is quite unlikely 
that the cross-correlation structure between the 
process and quality variables remains the same 
during the whole duration of a batch. This in turn 
means that a single PLS model might not be able to 
provide an accurate prediction of the quality 
variables along the whole batch. 
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Fig. 3. Prediction of the acidity number with a single 
PLS model (validation batch #4). The vertical 
bars represent the measurement accuracy. 

This is confirmed in Fig. 3, where the acidity number 
predicted by a single PLS model is compared to the 
actual values measured off line in a validation batch. 
It can be seen that the estimation accuracy is not 
satisfactory. One approach that can be considered to 
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overcome this problem is to derive more than one 
model to represent the different phases through 
which a batch evolves (Kourti, 2003; Ündey et al.,
2003). However, building a different model for each 
operating step would not be a viable solution, not 
only because the number of operating steps is large, 
but also because the actual number of steps in a batch 
is not known a priori, being dependent on the 
number of corrections the batch will be subject to. 
Furthermore, too few quality measurements may be 
available in a single operating step to build the 
relevant PLS model. 
The approach we have taken is to analyze whether 
different operating steps exist in a batch that share 
the same correlation structure among the variables. If 
this is the case, the same PLS model can be used to 
represent these “shared” operating steps. 
In the score plot of Figure 4, the first and second LV 
scores of a 5-LV PLS model built on the calibration 
dataset are plotted versus each other for the time 
instants where quality measurements are available. It 
can be seen that the score points are mainly clustered 
into three distinct regions of the score plane. Close 
inspection of the clusters revealed that all batches are 
characterized by a similar pattern in the “movement” 
of score points during a batch: a score point is 
located at the left of the score plane (“Phase 1” 
cluster) at the beginning of the operation, then moves 
to the center of the plane (“Phase 2” cluster) as time 
progresses, and finally shifts to the plane right 
(“Phase 3” cluster) towards the end of the batch. 
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Fig. 4. Score plot on the first and second latent 
variables for a single PLS model predicting 
viscosity and number of acidity (calibration 
dataset).

It is expected that the correlation structure between 
process and quality variables is more similar for 
points within a cluster than for points between 
clusters. Otherwise stated, each cluster (i.e., each 
phase) may be envisioned as a series of operating 
steps that share the same correlation structure among 
the process and quality variables. Therefore, for each 
phase one PLS submodel can be developed to predict 
the quality variables from the process ones. The 
resulting quality estimator is therefore a three-phase
PLS model. 

A key issue in the development of such a multi-phase 
estimator is finding a proper criterion to switch from 
one PLS submodel to the other one. Switching from 
one submodel to the other one means being able to 
recognize online that the cross-correlation structure 
of the data is changing. Inspection of the process data 
for all reference batches revealed that switching from 
Phase 1 to Phase 2 occurs the first time vacuum is 
applied to the reactor, while Phase 3 is initiated as 
soon as the final rise in temperature takes place. 
Therefore, clearly detectable events can be 
recognized in a batch to trigger the model switching. 

4. RESULTS 

A three-phase PLS model was built using the 24 
reference batches. Each submodel uses five latent 
variables. Note that, although we forced each 
submodel to use the same number of LV’s, this 
constraint could be relaxed. In particular, it may be 
convenient to use more LV’s in the submodels 
representing Phase 1 and Phase 2 in the NA estimator, 
because (as far as the acidity number estimation is 
concerned) the signal-to-noise ratio is more favorable 
at the beginning of the batch rather than at the end. 

Table 1. Explained variance (EV) on the calibration 
dataset.

Phase Submodel on NA Submodel on 

1
2
3

EV on X
(%)

EV on Y
(%)

65.62 88.78 
67.03 82.84 
71.54 60.69 

EV on X
(%)

EV Y
(%)

65.60 87.20
66.82 77.66
71.84 43.59
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Fig. 5. Average relative prediction error on the 
validation datasets with the three-phase PLS 
model. 

The submodels’ explained variance on the input and 
output data of the calibration dataset is listed in Table 
1. To provide an overall picture of the estimator’s 
performance, the average relative prediction error on 
each quality variable is reported in Fig. 5 for each 
estimation phase. It can be seen that the estimation of 
viscosity is more accurate than the estimation of the 
acidity number. In any case, the average estimation 
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accuracy is generally well within the measurements 
accuracy, except for the estimation of NA during 
Phase 2. This is due to the fact that most of the 
corrections to a batch take place during Phase 2, 
which is therefore subject to a much larger variability 
than the other phases. It is expected that adding new 
batches to the reference dataset can improve the 
representation of Phase 2. 
Typical results for the estimation of the viscosity and 
acidity number are shown in Fig. 6. It can be seen 
that the estimation accuracy is greatly improved with 
respect to using a single PLS model (Fig. 3), 
particularly so by the end of the batch, when the 
resin quality is approaching the specification. In the 
batch shown in Fig. 6 each phase has a similar 
duration, but this is not a general behavior. In 
accordance to the results of Fig. 5, the estimation 
performance for the acidity number is slightly worse 
during Phase 2. 
Overall speaking, however, the performance of the 
three-phase online estimator in predicting the 
evolution of the resin quality indicators was always 
very satisfactory.  
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Fig. 6. Prediction of the (a) viscosity and (b) acidity 
number with the three-phase PLS model 
(validation batch #4). The vertical bars 
represent the measurement accuracy. 

5. CONCLUSIONS 

A multi-model PLS estimator was developed to 
provide online the estimation of the acidity number 
and viscosity of a resin produced in an industrial 
batch polymerization process. Although each batch is 
run through a complex and poorly reproducible chain 
of operations, it was shown that the estimation can be 
carried out using only three PLS submodels in 
sequence. Switching from one model to the other one 
can be triggered by easily detectable landmark events 
occurring in a batch. The estimator’s performance is 
very satisfactory. 
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