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Abstract: Normal red cell dynamic behavior could be important in circulatory function. It 
may initiate many cellular damages, particularly in adhesion reactions with blood vessel 
endothelium. The purpose of this study is to use velocity criteria to classify normal red 
blood cells (RBCs) under dynamic conditions. Three classification methods were used, 
K-Means, HAC and LAMDA. They pointed out two classes of red blood cells with a 
third one at the boundary between the two others. This particular composition may 
influence cell specific behavior,  especially under pathological conditions. Copyright © 
2007 IFAC 
 
Keywords: Systems Biology, Data Mining Tools, Blood flow, RBC velocity, Dynamic 
behavior, Adhesion, Classification method. 
 

 
 
 
 

 
1. INTRODUCTION 

 
Red cells dynamic behavior represents an important 
phenomenon according to their physiologic role in 
blood circulation. In normal conditions, cell behavior 
initiates many cellular and tissular damages, 
particularly adhesion reactions, as seen in vascular 
diseases as sickle cell disease (SCD) and malaria 
(Eaton, et al., 1976; Hebbel, et al., 1980; Hoover, et 
al., 1979; Kaul and Nagel, 1993; Kumar, et al., 
1996). In fact, some authors demonstrated that cell 
adhesion may be modulated in pathologic conditions  
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such as inflammation, vascular disease and during 
different medical treatments (Eaton, et al., 1976; 
Hebbel, et al., 1980; Hoover, et al., 1979; Kaul and 
Nagel, 1993; Kumar, et al., 1996; Smolinski, et al., 
1995). As endothelial cells are subject to flow shear 
stress, it is important to determine the detailed 
velocity distribution in microvessels in the study of 
mechanical interactions between blood and 
endothelium. 
 
The present study focuses on the normal red cell 
dynamic behavior especially RBC velocity using a 
flow chamber associated to an apparatus of video-
microscope image analyzer. This method simulates 
blood flow conditions as in normal situation, and can 
be used to simulate pathologic conditions as in case 
of inflammation status, vascular diseases, where 
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blood cells and endothelium interactions are 
modified. Three standard classification methods were 
used, usually, K-Means, HAC and LAMDA to 
determine RBC classes. The results allow us to 
establish a preliminary profile of RBC velocity in 
order to compare to profiles obtained after vascular 
disease analysis. 
 
 

2. MATERIAL AND METHODS 
 
 
2.1 Endothelial cells. 
 
Transformed Human Bone Marrow Endothelial Cells 
(TrHBMEC) were kindly provided by Dr. Weksler 
and Pr. Elion. TrHBMEC were maintained in 
humidified air/5% CO2 at 37°C. TrHBMEC 
monolayers were grown to confluence in gelatin-
coated Thermanox slides (Nalgene Nunc 
International) as previously described by Schweitzer, 
et al. (1997). 
 
 
2.2 Red blood cells 
 
Peripheral venous blood samples were obtained from 
healthy normal volunteers (AA) at the Centre 
National France Transplant (Hôpital Saint-Louis, 
Paris). RBCs were isolated from whole blood by 
repeated centrifugation and washes with saline. They 
were suspended in  endothelial cell culture medium, 
without fetal calf serum and adjusted to 106 red 
cells/ml for flow assay. 
 
 
2.3 Flow chamber 
 
The flow chamber is composed of a rectangular 
plexiglas cavity (0.2 mm height, 29 mm length, 5 
mm width). The bottom wall of the chamber is a 
Thermanox coverslip (0.17 x 60 x 24 mm3) where 
endothelial cells were first coated. RBCs in 
suspension were directly injected into the chamber 
by the use of a plastic syringe. An electric pump 
(Havard Apparatus) generates a controlled flow 
according to normal vessel flow, 1 dyne/cm², 10 
minutes. The flow chamber is associated with an 
inverted microscope (Nikon Eclipse TE300, X20). 
The real-time images coming from the flow chamber 
are recorded with a video tape recorder (Sony time 
lapse 168) and analyzed with a specific video 
analyzer (Pentium with Matrox digitized card). The 
experimental data obtained as velocity, acceleration, 
angular deviation, linearity index are used to 
characterize red cells trajectories, cell adhesion and 
cell-cell interactions. All experiments were 
performed at room temperature and repeated three 
times. 
 
 
2.4 Classification methods 
 
Three standard classification methods were used:  

- K-Means clustering  

- HAC: Hierarchical Agglomerative 
Clustering 

- LAMDA: Learning Algorithm for 
Multivariate Data Analysis 

 
HAC and K-Means are classical methods whereas 
LAMDAis a recent research method. The two first 
one have been successfully used in the biomedical 
fields (Murase, et al., 2001; Norcum, 1999). 
 
K-Means is a classical method based on the 
evaluation of distances between the sample and the 
provided centers of classes. The latter is given by the 
user at the beginning of the classification. These 
centers are then modified during the classification. 
 
Furthermore, HAC is a hierarchical method based on 
hierarchical level of aggregation. The method 
provides several level of classification which are 
included. The visualization of the classification is 
made with a binary tree. 
 
LAMDA is based on an original idea of Aguilar-
Martin, et al. (1980). It has been successfully used in 
pattern recognition (Piera-Carreté, et al., 1990), in 
biomedical imaging (Chan, et al., 1989), for system 
of wastewater treatment (Waissman-Vilanova, et al., 
2000) and for bioprocesses (Aguilar-Martin, et al., 
1999). It is based on the evaluation of a membership 
function which is a generalization on the interval 
[0,1] of a binomial law of {0,1}. The membership 
function is given by: 
 

     M(x)= ρa(x) . (1-ρ) (1-a(x))           (1) 
 

Where a(x) ∈ [0,1] is a presence function and ρ ∈  
[0, 1]. a(x) is generally a distance computed between 
a center of class and the sample. ρ is given by the 
user. This method is detailed in the following 
publications (Regis, et al., 2004a; Waissman-
Vilanova , et al., 2000a). 
 
The three methods gave different class centers. 
Number of classes and its centers are fixed 
beforehand in K-Means method while these 
parameters depend only on level of classification 
chosen by the users in HAC method. In LAMDA 
method, number of classes and their centers are 
computed according to the initial database (Regis, et 
al., 2004a; Regis, et al., 2004b; Waissman-Vilanova, 
2000b). 
 

3. RESULTS 
 
 
3.1 Trajectory analysis 
 
The real-time images coming from the flow chamber 
are recorded and analyzed into numerical data. 
 
This study is based on the hypothesis that RBC 
velocity distribution should be a Gaussian one, 
calculated using Unilog, Stat 2005 software. The 
velocity distribution is estimated by a standard 
histogram (fig 1). Each bar represents the percentage 
of cells presenting the same mean velocity. The 
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histogram obtained show local maximum, suggesting 
that the distribution is a mixture of two or three 
Gaussian distributions which confirms an 
heterogeneous RBC population. Such a mixture can 
be estimated by using the well-known MCEM 
algorithm which requires an a-priori number of 
components of the mixture, that is the number of 
probabilistic classes. Most of RBC velocities are 
concentrated around 880,60 µm/ms, as seen in figure 
1. Two other groups are concentrated around 
1071,11 µm/ms and 1261,62 µm/ms. 
 
 
3.2 Class number 
 
Different RBC subgroups are obtained using 
classification method as HAC, K-Means and 
LAMDA. The result of this classification is a 
distribution into two classes, as presented in table 1, 
indicating that RBC population is composed of two 
different classes, a slow one, class 1 (C1) and a faster 
one, class 2 (C2) according to mean velocity (MV). 
RCN represents red cell number. 

 
Table 1 Velocity-class distribution of HAC, K-

Means and LAMDA methods. 
 
        K-Means  HAC           LAMDA 

         MV      RCN      MV       RCN      MV       RCN 

C1   750,08    25       899,79     48       899.37     47 
C2  1199,77   33       1515,44   10       1515,10   11 
 
 
Indeed, with K-Means, the class centers for C1 and 
C2 are, respectively, 750,08 µm/ms for 25 cells and 
1199,77 µm/ms for 33 cells. However, with HAC 
method, the class centers for C1 and C2 are, 
respectively, 899,79 µm/ms for 48 cells and 1515,44 
µm/ms for 10 cells. Similar results are obtained with 
LAMDA: 899,37 µm/ms for 47 cells and 1515,10 
µm/ms for 11 cells. 
 
Cell distributions are presented in figure 2 for HAC 
and LAMDA and in figure 3 for K-Means. C1 
repartition indicates that this class is more extended 
with HAC and LAMDA methods (499,58 to 1219,55 
µm/ms, white triangles, fig 2) than with K-Means 
method (499,58 to 872,56 µm/ms, white triangles, fig 
3). This distribution is different in C2 class. The 
values vary from 1302,27 to 1950,45 µm/ms (black 
squares, fig 2) with LAMDA and HAC. This interval 
is reduced when using K-Means. It vary from 901,59 
to 1950,45 µm/ms (black squares, fig 3). Thus, HAC 
and LAMDA class repartition is more homogeneous 
for C1 class. On the contrary, K-means makes C2 
more homogeneous. In parallel, RBC are better 
distributed into K-means clusters (C1 RCN = 25; C2 
= 33) than with HAC and LAMDA methods (C1 
RCN = 47; C2 RCN = 11). 
 
For the first time, we can establish a velocity profile 
for a normal red cell population. We obtained two 
classes with different RCN and MV (table 1). The 
largest class is the slowest with HAC and LAMDA 

(fig 2). On the contrary, the largest class is the fastest 
with K-Means (fig 3). 
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Fig. 1. Statistical distribution histogram of normal 

RBC velocity. Frequencies are represented in Y-
coordinate and velocity (µm/ms) in X-coordinate. 

 
 
The difference observed between K-means, HAC and 
LAMDA methods could be explained by the 
existence of a third medium class at the boundary 
between the two others.  
 
 

4. DISCUSSION – CONCLUSION 
 
In this paper, a chamber flow was used to simulate 
the blood flow and measure RBC velocity. The 
results show that the normal red cell population can 
be classified into two major groups, according to 
RBC velocity, a slow one, C1 and C2, with the 
highest mean velocity. It appears necessary to 
understand the biological importance of these 
classes. Indeed, this repartition could influence red 
cell biological behavior. In that case, red cells will 
have different role on circulatory function. Further 
studies are necessary to confirm those observations 
and determine biological effects of RBC velocity. In 
that purpose, other classification methods as decision  
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Fig. 2. HAC and LAMDA cell class repartition. C1 

cells are presented by white triangles and C2, by 
black squares.Velocity of each red blood cell is 
represented in Y-coordinate (µm/ms) whereas 
each blood cell is represented in X-coordinate. 

 
trees, expert system and biological experiments could 
be tested. Several studies were made on red cell 
velocity, to better understand the physiological 
effect, particularly in pathological conditions. Since 
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1971, Rosemblum (1971) observed a difference 
between red blood cell velocity and plasma velocity . 
He already noticed an heterogeneity in RBC velocity 
in venules (Rosemblum, 1971; Rosemblum, 1972a; 
Rosemblum, 1972b; Rosemblum, 1976). Our results 
confirm this heterogeneity observation. Bishop et al. 
(2001) suggested that RBC aggregation, defined as 
cells come into close proximity, may have a 
significant effect on circulatory function and on in 
vivo hemodynamics. These authors showed a 
different evolution according to the blood cell 
position, axial migration or near the wall of veins. 
This observation suggests a different red cell velocity 
distribution, confirmed by the present study. 
However, the experimental conditions used here do 
not allow us to define each class according to its 
location into the vessel. Even thought, we can 
hypothesize that the slowest class could be located 
near the endothelial cells wall and the fastest class, 
more in the axial migration. RBC trajectory studies 
(linearity, etc…) will be necessary. 
 
However, the class composition could be explained 
by RBC characteristics such as cell age or density. 
Recently, Grima (2007) indicated that cell’s velocity 
is primarily determined by the chemical gradient. 
Major factor in red cell compaction, particularly in 
haemoglobinopathies such as SCD, influence the cell 
characteristics, facilitating their adhesion. Further 
works are necessary to determine the biochemical, 
cellular, morphological and trajectory specificities, 
responsible for the dynamic differences observed. 
Embury et al. (1999) reported that the blood flow 
velocity in medium venules, in a mice model was 
about 1,1 ± 0,2 mm/s. This value is different from 
the in vitro model we used, where the mean velocity 
for the total population is 1,0 ± 0,30 mm/ms. This 
difference may be explained by in vitro experimental 
conditions, especially, the controlled blood flow and 
the lack of viscosity. They also pointed out blood 
flow abnormalities and detected decreased blood 
flow velocity in venules of all diameters in SCD 
mice model (Embury, et al., 1999; Paszty, et al., 
1997). Indeed, in normal medium venules, the blood 
velocity is about 1,1 ± 0,2 mm/s compared to SCD 
medium venules were the blood velocity is less than 
0,2 ± 0,1 mm/s (Embury, et al., 1999). 
 
All these different experiments suggest that blood 
flow studies would be useful to understand vascular 
disease mechanisms. It will be interesting to apply 
cell classification method according to velocity, 
under various conditions as inflammation or medical 
treatment. 
 
To conclude, these different studies may be useful to 
determine a new approach to quantify and 
characterize RBC dynamic behavior, according to 
the pathological state, as in medical treatment, 
cellular damages or vascular diseases. 
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