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Abstract: The integrative analysis of DNA copy number levels and transcriptional 
profiles, in context of the physical location of genes in a genome, still represents a 
challenge in the bioinformatics arena. A computational framework based on locally 
adaptive statistical procedures (Locally Adaptive Statistical Procedure, LAP and Global 
Smoothing Copy Number, GLSCN) for the identification of imbalanced chromosomal 
regions in single samples is described. The application of LAP and GLSCN to the 
integrative analysis of clear cell renal carcinoma patients allowed identifying 
chromosomal regions that are directly involved in known and novel chromosomal 
aberrations characteristic of tumors. Copyright © 2007 IFAC 
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1. INTRODUCTION 
 
Disclosures from the genome sequencing projects are 
inducing molecular biologists to adopt a novel, 
systemic approach termed systems biology. Systems 
biology elevates the study of biological systems from 
the single entity level to higher hierarchies, such as 
entire genomic regions, groups of co-expressed 
genes, functional modules, and networks of 
interactions. In this context, high-throughput genomic 
data represents a fundamental discovery tool to 
understand and reconstruct biological mechanisms 
and regulatory networks. The massive and rapid 
accumulation of structural and functional information 
has required the development of computational 
frameworks able to turn genomic data into accurate 
and robust biological hypotheses about the genetic 
and epigenetic mechanisms regulating the 
transcriptional machinery (Beer and Tavazoie, 2004). 
Moreover, recent studies on the relationships between 

gene structure and gene function in eukaryotic 
genomes showed how groups of physically 
contiguous genes are characterized by similar, 
coordinated transcriptional profiles (Caron et al., 
2003; Versteeg et al., 2004) and suggested a 
relationship between genomic structural 
abnormalities and expression imbalances (under- or 
over-expression). In particular, Caron et al (2001) 
illustrated how whole chromosome views reveal a 
higher order organization of the genome, as there is a 
strong clustering of expressed genes with most 
chromosomes presenting large regions of highly 
transcribed genes, called RIDGEs (regions of 
increased gene expression), interspersed with regions 
where gene expression is low. Moreover, the 
pioneering study by Garraway and colleagues 
(Garraway et al., 2005) illustrated how the 
combination of pre-existing gene expression profiles 
with genome-wide copy number (CN) data can lead 
to the identification of novel lineage-specific 
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oncogenes associated with copy number gain in 
tumor specimens. Only recently, however, have 
single studies reported the simultaneous generation of 
genome-wide maps of copy number alterations 
(CNAs) and transcriptional activity to study the 
global effects of chromosomal instability on gene 
expression (Tsafrir et al., 2006; Kotliarov et al., 
2006). Indeed, genomic instability in human samples 
can be monitored using microarray-based techniques, 
in particular high-density single nucleotide 
polymorphism (SNP)-mapping arrays (Bignell et al., 
2004). These oligonucleotide arrays permit the 
simultaneous genotyping of more than 100,000 SNPs 
and thus provide information on loss of 
heterozygosity (LOH) and chromosomal alterations 
with a detection limit reaching 20 kb. More 
importantly, when copy number profiles of 
chromosomal instability are confronted with 
transcriptional data in various tumor samples, a clear 
impact of DNA copy number change on gene 
expression can be observed.  
Given these experimental evidences, the integration 
of high-throughput genomic and transcriptional data 
with gene structural information (i.e., chromosomal 
localization) represents a major challenge for 
bioinformatics and computational biology. Indeed, an 
integrated approach would allow deciphering how the 
structural organization of genomes influences its 
functional utilization, identifying how transcription 
factors regulate gene expression through target genes, 
and discover novel cancer biomarkers. 
Several computational approaches have been adopted 
to identify chromosomal regions of increased or 
decreased expression from transcriptional data (Beer 
and Tavazoie, 2004; Bignell et al., 2004; Crawley 
and Furge, 2002; Toedling et al., 2004; Levin et al., 
2005; Callegaro et al., 2006) and to quantify the 
degree of cooperativity between the number of copies 
of a gene and its expression level (Garraway et al., 
2005; Tsafrir et al., 2006; Kotliarov et al., 2006; 
Cifola et al., 2006). All these methods order the data 
according to the chromosomal location, smooth 
transcriptional and copy number signal (e.g., using 
windows of fixed length or containing a pre-selected 
number of genes or with a variable bandwidth) and 
finally calculate correlation coefficients and 
significance between CN and mRNA expression. In 
particular, Callegaro et al. (2006) and Cifola et al. 
(2006) presented an integrated framework based on 
two non-parametric model-free bioinformatics tools 
to identify genomic regions characterized by 
concomitant alterations in copy number and in 
regional transcriptional activity. Both Locally 
Adaptive Statistical Procedure (LAP, Callegaro et al., 
2006) and Global Smoothing Copy Number 
(GLSCN) account for variations in gene distance and 
density and are based on the computation of a 
standard statistic as a measure of the difference in 
genomic and gene expression patterns between 
groups of samples. Once calculated, the statistics are 
sorted, on each chromosome, according to the 
chromosomal coordinate (in base pairs) of the 
corresponding gene. For each chromosome, the 

statistic is locally smoothed using non-parametric 
estimation of regression function over the positional 
coordinate. Chromosomal regions with CN 
alterations and transcriptional imbalances are 
identified using a permutation procedure. In 
particular, gene positions are randomly shuffled and 
the randomly generated statistics are smoothed to 
generate the null smoothed distribution. This 
empirical null distribution is finally used to estimate 
the q-value measure of significance. 
Although effective, LAP and GLSCN are limited to 
the differential analysis of populations of samples, 
thus precluding the identification of genomic 
anomalies affecting single patients. Thus, the purpose 
of this work is to present a computational framework 
based on LAP and GLSCN for the identification of 
genomic regions characterized by concomitant 
alterations in copy number (CN) and in regional 
transcriptional activity in single tumor samples. 
 

2. METHODS 
 
In its original version, LAP calculates a statistic for 
ranking probes in order of strength of the evidence 
for differential expression in two or more 
populations. Specifically, given a matrix X of 
normalized expression levels xij for gene i in sample j 
(i = 1, 2, ..., G; j = 1, 2, ..., n) and Y a response 
vector yj (j = 1, 2, ..., n) for n samples, the statistic di 
can be defined as the ratio of change in gene 
expression ri to the standard deviation in the data set 
si for each probe set i: 
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where the quantities ri and si assume different 
formulations in different experimental designs (e.g., 
two- and multi-class problems, paired data, 
quantitative responses, time course experiments, 
survival analyses) and the estimates of gene-specific 
variance over repeated measurements are stabilized 
by a fudge factor s0 (see Tusher et al., 2001 and SAM 
technical manual for details). 
Considering the analysis of a single patient j from a 
population of m tumor samples with normalized 
expression level j

ix for gene i and a populations of n 
normal specimens with average gene 
expression norm

ix , the statistic di is defined as: 
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where standard deviation si for each probe set i is 
estimated using all tumor and normal samples: 
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Similarly to LAP, Global Smoothing Copy Number 
(GLSCN) analyzes differential copy number values 
for individual mapping arrays probes (SNPs) in two 
populations. For the analysis at the single patient 
level, the statistic of GLSCN has been modify to 
subject CN data of a tumor sample j to a hypothesis 
test, in which the null and alternative hypotheses are 
formulated respectively as: 
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where j

iCN  is the copy number value of SNP i in 
sample j, the median j

allSNPsCN  is calculated over all 
SNP probes in sample j, and variance is assumed to 
be constant. 
Once calculated, expression and CN statistics are 
converted into smoothed scores using a kernel 
regression estimator with fixed or automatically 
adapted local plug-in bandwidth. As described in 
(Toedling J et al., 2005; Callegaro et al., 2006; Cifola 
et al., 2006) smoothing of the statistic can be 
formally stated as a non-parametric regression 
problem where the score is to be estimated over the 
chromosomal coordinate. Non-parametric regression 
problems can be approached using various methods, 
as kernel smoothing, orthogonal series, spline 
functions or wavelets. A critical issue in selecting the 
regression strategy is represented by the procedure 
for adapting the smoothing parameters. Indeed, the 
smoothing parameters, e.g the bandwidth, can be 
adapted globally or locally (Herrmann, 1997). Both 
LAP and GLSCN use the lokern function adapted 
from the Gasser-Müller type estimator (Herrmann, 
1997; Gasser and Müller, 1979) for smoothing the 
statistic scores. However, in the case of the gene 
expression data, given the heterogeneous distances 
and densities of RNA probes on the chromosomes, 
the optimal bandwidth is estimated iteratively 
minimizing the asymptotic mean squared error. 
Instead, in the case of CNAs, a fixed bandwidth (e.g., 
of 1 Mb) can be chosen in consideration of the 
relatively homogeneous distribution of SNP probes 
along the chromosomes. 
Finally, chromosomal regions with transcriptional 
imbalances and smoothed CN scores significantly 
different from the median CN value are identified 
using a permutation procedure under the assumption 
that each gene has a unique neighborhood and that 
the corresponding smoothed statistic is not 
comparable with any statistic smoothed in other 
regions of the genome. The G statistic scores are first 
randomly assigned to G chromosomal locations 
through permutations and then, for each permutation, 
smoothed over the chromosomal coordinate. Thus, 
observed and null statistics are smoothed and 
compared exactly over the same region, taking into 
account variations in the gene distances and in gene 
density. The permutation process, over B random 
assignments, allows defining the null smoothed 
statistic for gene/SNP i. The significance of the 
differentially expressed genes, i.e., the p-value pi for 

gene/SNP i, is computed as the probability that the 
random null statistic exceeds the observed statistic 
over B permutations. This p-value has the peculiarity 
to be local since the observed smoothed statistic is 
compared only with null statistics smoothed on the 
same neighborhood of chromosomal position i. 
Indeed, during the permutation process, the 
chromosomal position is conserved while the 
statistics are randomly shuffled. Once the distribution 
of empirical p-values has been generated, the q-value 
is used to identify differentially expressed 
chromosomal regions. Q-values allow quantifying 
significance in light of thousands of simultaneous 
tests. 
 

3. RESULTS 
 

In the context of a research project focused on the 
identification of clinical biomarkers for renal cell 
carcinoma (RCC), the single sample versions of LAP 
and GLSCN have been applied to the analysis of 6 
paired normal/tumor samples of human clear cell 
renal carcinoma (ccRCC). Using Affymetrix high-
density oligonucleotide microarray technology, a 
transcriptional profiling (on GeneChip Human 
Genome U133 Plus 2.0 arrays) and a genome-wide 
SNP-mapping of CNAs (on GeneChip Human 
Mapping 100K SNP arrays) were performed. Raw 
signal intensities were converted to expression values 
using the robust multi-array average (RMA) 
procedure and to CN values using Affymterix Copy 
Number Analysis Tool (CNAT, v3.0). To assign 
probe sets to genes, the 47,401 HG-U133 Plus 2.0 
probe sets were annotated to obtain Entrez Gene IDs 
and chromosomal positions, using the annotate 
package of Bioconductor for the R environment 
(http://www.bioconductor.org). This re-annotation 
step, in addition to the filtering out of probe sets 
without a unique chromosomal position and those 
referring to the X and Y chromosomes, resulted in 
the selection of 16,473 unique gene IDs for further 
studies. CN data for SNPs without a unique 
chromosomal position as well as for SNPs on the X 
chromosome were filtered out (the 100K arrays do 
not contain SNPs on Y chromosome) and the 
resulting dataset comprised a total of 112,990 SNPs. 
Re-annotated gene expression and copy number data 
of any single patient were analyzed with the single 
sample versions of LAP and GLSCN, respectively. 
Specifically, the 16,473 expression values have been 
converted into statistic di using Eq. (2) and (3). The 
statistic scores have been further smoothed over the 
chromosomal coordinates, using the lokern function. 
The smoothed scores have been then randomly 
assigned to 16,473 gene loci over 100,000 
permutations and smoothed over the chromosomal 
coordinate. Similarly, the 112,990 CN values have 
been converted into statistic scores using the 
hypotheses of Eq. (4) and the statistics smoothed over 
the chromosomal coordinates, using the lokern 
function. The smoothed scores have been then 
randomly assigned to 112,990 chromosomal 
positions over 100,000 permutations and smoothed 
over the chromosomal coordinate.  
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Fig. 1. Single sample whole genome plots of the 

chromosomal regions with CNAs, (left panel), 
and gene expression imbalances, (right panel), at a 
q-value=0 a q-value<0.05 for CN and gene 
expression data, respectively. The white bars 
indicate locations and orientations of all probe 
sets in the microarray, the red perpendicular lines 
represent the exact chromosomal locations and 
orientations of genes with CN gain or up-
regulated, and the green lines the location of 
probes with CN loss or down-regulated. 

 
Finally, to integrate gene expression and CN data, p-
values have been computed as the probability that the 
random null statistic exceeded the observed statistic 

over the permutations for the 16,473 unique gene loci 
used in the LAP analysis. Once the distribution of 
empirical p-values had been generated, q-value was 
used to identify chromosomal regions affected by 
transcriptional imbalances and CNAs. The single 
sample analysis with LAP and GLSCN generated the 
high-resolution genomic maps of Figure 1 (setting 
q<0.05 and q=0 for transcriptional activity and CNAa 
analysis, respectively). 
To evaluate the relationship between CNA and 
transcriptional activity, the relative statistic scores for 
16,473 well annotated chromosomal positions 
(genes) were categorized into three classes: increased 
(gain of CN or up-regulated), unchanged and 
decreased (loss of CN or down-regulated). At q=0 
for CNA analysis and q<0.05 for transcriptional 
analysis, the concordance of categorization in the 
various samples is reported in Table 1. 
 
Table 1 Percentage concordance between number of 

genes with transcriptional and CN alterations in 
increased, unchanged and decreased categories 

 
Concordance % Sample # Increased Unchanged Decreased 

1 56 79 36 
2 1 97 67 
3 31 82 44 
4 0.5 98 16 
5 0.6 98 27 
6 63 81 25 

 
4. DISCUSSION AND CONCLUSIONS 

 
A novel mathematical and statistical framework to 
combine microarray profiles of transcriptional 
activity and copy number alterations (CNAs) at 
genome level has been developed and applied to 
study single tumor samples. The integrative analysis 
of genomic and transcriptional data using locally 
adaptive single-sample statistical procedures allowed 
identifying sample-specific, as well as global, 
associations between DNA copy number changes and 
regional gene expression levels. In particular, a novel 
finding is the concomitant loss of sequences of the 
short arm of chromosome 3 and of the long arm of 
chromosome 9 and the gain of chromosome 5. These 
abnormalities in copy number are highly correlated 
with the down-regulation of the transcriptional 
activity of genes located in chromosomes 3 and 9 and 
with the up-regulation of transcripts from 
chromosome 5. 
To our knowledge, this is the first computational 
platform able to directly combine, on a single sample 
base, SNP-based CN data and transcriptional profiles 
at the level of gene loci for 16,473 unique genes 
using Affymetrix microarrays. The identified 
chromosomal areas, presenting concomitant 
alterations in genomic and transcriptomic profiles, 
could be tumor-specific regions containing candidate 
clinical biomarkers or patient-specific abnormalities 
to be related to the disease etiology or outcome. 
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