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Abstract: The observability properties of a 3-D aerobic biological reactor are
analyzed in a general global sense. Using basic definitions of indistinguishability,
observability and detectability a recently developed method is used to determine a
dynamical representation of all possible indistinguishable trajectories of the model
for the reactor class. This dynamics is analyzed for the representative case of a
non-monotonic Haldane-type kinetics law. It is shown that the reactor model is
not observable. Nevertheless, using the theory of asymptotic autonomous systems
it is shown that the system is detectable under practically reasonable conditions.
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1. INTRODUCTION

The analysis of the observability properties of
dynamical systems is an important task, neces-
sary for the assurance of observer convergence.
Observability is equivalent to the possibility of
dynamically distinguishing the system’s internal
trajectories using information of the input and
output signals only. This intrinsic property is of
immense importance in general systems theory.
Further, it has direct implications on the possibil-
ities of estimating the actual unmeasured system
states. There are some (classical) criteria that
imply the observability of a dynamical system in
the nonlinear case, at least in a local sense. These
are in principle: (i) the application of the Kalman
observability matrix rank condition and (ii) the
analysis of the invertibility of the observability
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map, consisting of successive time derivatives of
the output signal along the system trajectories.
Nevertheless, both methods are only sufficient.
Recently a method using a natural direct im-
plications of the fundamental definitions of in-
distinguishability / observability has been intro-
duced and applied to several dynamical systems of
practical importance, illustrating the great advan-
tages in comparison with the mentioned (classical)
methods (Ibarra Rojas et al. (2004), Moreno and
Dochain (2005)). A great advantage is that the
method yields directly a dynamical representa-
tion of all indistinguishable trajectories as well as
the corresponding bad inputs and thus enables a
deep analysis of the natural system properties,
eventually improving or obstructing the design
of observers as has been shown e.g. in (Schaum
and Moreno (2006)). The purpose of the work
presented here is the global analysis of the observ-
ability properties of an aerobic biological reactor
applying this method. The used model finds ap-
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plication e.g. in the control of a biological reactor
used in the treatment of industrial wastewater
(Moreno et al. (2006)). For this process there has
been tried to design several (classical) observers
for control purposes. All of them have failed, in
principle, at least for non monotonic kinetics (see
Vargas (1999); Schaum (2006)). This has been
in some sense surprising and motivated further
investigations in the intrinsic dynamical nature of
the general model, especially in the inherent prop-
erties influencing the design of observers. Classical
analysis methods do not yield sufficient informa-
tion to allow a discussion of the problem. For ex-
ample, with the Kalman rank condition the lack of
observability of the linearization around the point
of maximum growth for non-monotonic kinetics
is obtained, but no global analysis is possible.
The observability map, on the other hand is not
conclusive, since it is only a sufficient condition,
i.e. the fact, that the observability map loses rank
for all states except the point of maximum growth
does not imply that the system is not observ-
able. This motivates the application of the above
mentioned method, using a basic dynamical inter-
pretation of the underlying concepts. The main
results of this investigation are presented here.

The paper is organized as follows: Section 2
presents some preliminaries of the work. Section
3 is dedicated to the analysis of the models for a
representative non-monotonic (Haldane-type) ki-
netics. It further includes some illustrative simu-
lations. Some conclusions finish the paper.

2. PRELIMINARIES

2.1 Model Description

This subsection is dedicated to the presentation
of the mathematical model of the biological pro-
cesses to be analyzed. The model equations read

Σ





Ẋ = (µ(S)−D −Kd)X
Ṡ = −C1µ(S)X + D(Sin − S)
Ȯ = −[C2µ(S) + b]X + D(Oin −O)

+ Kla(Os −O)
y = O

, (1)

with biomass X ∈ R+, substrate S ∈ R+ and
dissolved oxygen O ∈ R+ concentrations in the
reactor. µ : R → R, is the reaction rate, D ∈ R+

is the dilution rate, Kd ≥ 0 is the mortality
rate, b > 0 the respiration rate and C1, C2 are
yield coefficients. The inflow concentrations of the
substrate Sin > 0, the dissolved oxygen Oin > 0,
the transfer coefficient Kla > 0 and the saturation
concentration of the dissolved oxygen Os > 0 are
assumed constant and known. The given reactor
model is used e.g. in a process for the treatment
of industrial wastewater (see e.g. Moreno et al.
(2006)). For the observability analysis it will be

assumed that the model parameters and the input
D are known, and that the only state available for
measurement is O. The nonlinearity of the process
is given by the kinetics µ(S), representing the
specific growth rate, that, in general, can be of two
different types: monotonic (as e.g. Monod) or non-
monotonic (as e.g. Haldane). Since the observ-
ability properties for the monotonic case can be
completely studied using the observability map, in
this paper we will concentrate mainly on the non-
monotonic case, for which the observability map
criterion is not applicable and many observer de-
sign methods fail (Schaum (2006)) (e.g. High-Gain
and Reduced Order Observers). For the parts of
the analysis not valid in general a Haldane type
kinetics will be used, i.e.

µ(S) =
µ0KiS

S2 + KiS + KsKi
,

with positive and constant kinetic parameters
µ0, Ki and Ks which are assumed to be known.
The graph of this kinetics is illustrated in Figure
1. The maximum value µ∗ = µ (S∗) is reached at
the point S∗ =

√
KsKi.
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Fig. 1. Essential dependence of the Haldane kinet-
ics on the substrate concentration.

2.2 Dynamical Interpretation of Observability

In this subsection the dynamical concept of ob-
servability is discussed. Observability represents in
principle the property of an open dynamical sys-
tem to permit a dynamic distinction of all system
trajectories by information about the system’s
input and output signals only. The basic condition
that has to be fulfilled therefore is the distin-
guishability of all trajectories under the influence
of all possible input signals, i.e. trajectories having
different initial conditions and the same input
produce a different output. But for many systems
there exist distinct trajectories that cannot be dis-
tinguished from the input/output behavior. Such
trajectories are called indistinguishable. The indis-
tinguishability thus eventually permits identical
outputs for not necessarily identical trajectories.
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Nevertheless if it is ensured that such not identical
trajectories converge to the same trajectory, then
they are called detectable (or determinable). These
considerations are interpreted in the following
Gedanken-experiment:
Consider two identical reactors Σ1 and Σ2, driven
by the same input signal D, guiding the inter-
nal trajectories z1 , [X1, S1, O1]T of Σ1 and
z2 , [X2, S2, O2]T of Σ2. The trajectories z1 and
z2 yield the two output signals y1 = O1 and
y2 = O2, respectively. In order to analyze the
observability of the reactor, one has to determine
for which initial values of the two plants, and
for which input signals D, the output signals O1

and O2 are identical. Is it possible that different
initial values, i.e. [X1

0 , S1
0 , O1

0]
T 6= [X2

0 , S2
0 , O2

0]
T ,

guided by the same input signal (in the following
denoted as D∗), produce identical measurements
in both reactors, then the system is not observ-
able. The input signal D∗ corresponding to this
situation is then called bad input. In order to ana-
lyze the observability (or distinguishability) prop-
erties, note that the condition on the initial values
can be expressed in terms of the incremental error
ε , [X2 − X1, S2 − S1, O2 − O1]T between the
states. Detectability in this framework means the
asymptotic stability of ε = 0. It is important to
note that the incremental error is not independent
on the system state, and an analysis based on the
consideration of ε thus has to be carried out for
an extended system, given by the six dimensional
dynamics of [X1, S1, O1, ε1, ε2, ε3]T .

3. DYNAMICAL ANALYSIS OF
OBSERVABILITY PROPERTIES

3.1 A pathologic situation

To motivate the following analysis consider the
special case that the initial condition of the
biomass vanishes, i.e. X0 = 0. As can be directly
seen from (1) the complete biomass concentration
remains zero for all time. This causes a decoupling
of the oxygen concentration from the substrate
concentration. The evolution of the oxygen O
in fact becomes absolutely independent of S or
more explicitly Ȯ = Kla(Os − O) + D(Oin − O)
and it becomes impossible to get any information
about the substrate concentration from measuring
the oxygen concentration. Thus for X0 = 0 the
system is unobservable for all inputs and further
initial states and, therefore, it is impossible to
reconstruct the substrate concentration in this
case. This consideration shows the following direct
result, valid for an arbitrary kinetics

Proposition 1. The biological reactor model (1) is
neither observable nor detectable.

In practical terms this case represents a reactor
that does not work effectively and is thus patho-
logic. Nevertheless, it shows that the process has
unobservable trajectories. Thus it seems quite in-
teresting to analyze in detail the possibilities for
trajectories to be indistinguishable following the
Gedanken-experiment from the previous section.

This analysis is realized in the following. For this
purpose the complete indistinguishable dynamics
(ID) of (1) is derived. It represents all possible
indistinguishable trajectories of the system. Anal-
ysis of the ID shows that there are other indistin-
guishable trajectories, apart from the pathologic
situation X0 6= 0. However, surprisingly, if the set
of pathologic trajectories and the ones converging
asymptotically to a pathologic one are excluded,
the system turns out to be detectable!

3.2 The indistinguishable dynamics

In the sequel set [X1, S1, O1]T = [X, S, O]T .

Lemma 1. The ID for (1) is given by the following
DA (Differential Algebraic) system:

ΣI





Ẋ = µ(S)X − (D∗ + Kd)X
Ṡ = −C1µ(S)X + D∗(Sin − S)
Ȯ = −[C2µ(S) + b]X + D(Oin −O)+

+ Kla(Os −O)
ε̇1 = −(bC−1

2 + Kd + D∗)ε1
ε̇2 = bC1C

−1
2 ε1 −D∗ε2

∆ ≡ −bC−1
2 ε1

0 ≤ {X, S, O, X + ε1, S + ε2, D∗},
(2)

where ∆ , µ(S + ε2)(X + ε1)−µ(S)X, and D∗ is
given by (5).

To prove this result following the argumentation
of the previous subsection, the complete six di-
mensional dynamics of the incremental error sys-
tem is determined:

Σe





Ẋ = µ(S)X − (D + Kd)X
Ṡ = −C1µ(S)X + D(Sin − S)
Ȯ = −[C2µ(S) + b]X + D(Oin −O)+

+ Kla(Os −O)
ε̇1 = ∆− (Kd + D)ε1
ε̇2 = −C1∆−Dε2
ε̇3 = −C2∆− bε1 − (Kla + D)ε3,

(3)

For indistinguishable trajectories the restriction
ε3 ≡ 0 is satisfied, which represents the identity of
the measurements. This condition implies that all
time derivatives of ε3 vanish too. Setting to zero
the first time derivative of ε3 in (3) one obtains
with ε3 = 0 the algebraic restriction

∆ ≡ −bC−1
2 ε1. (4)

This condition has to be fulfilled for all indistin-
guishable motions and thus represents a restric-
tion on the initial values. Calculating the second
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time derivative of ε3 the input function D appears
in the corresponding condition so that one can de-
duce a correspondence for the bad input function
D∗. In effect, from

ε̈3 =
d

dt
{−C2∆− bε1} ≡ 0

it follows, after some calculations, that

D∗ =
C1µ(µ′ − µ̂′)X2 + ε1

[
C1µ̂

′
(
bC−1

2 X̂ − . . .

(Sin − S)µ′X − . . .

. . .− µX)− (
µ̂ + bC−1

2

) (
µ + bC−1

2

)]

. . .− (Sin − (S + ε2))µ̂′(X + ε1)
,

(5)

where X̂ , X + ε1, µ̂ , µ(S + ε2), µ̂′ , µ′(S +
ε2) and the prime stands for the derivative with
respect to S. The restriction D∗ ≥ 0 in (2)
represents the fact, that only those indistinguish-
able trajectories are considered that are caused
by feasible (i.e. in this case positive) bad input
functions. Furthermore note that both processes
considered, i.e. z1 = [X,S, O]T and z2 = [X +
ε1, S + ε2, O + ε3]T are supposed to be physically
realistic, so that the considered concentrations in
z1 and z2 are all positive. This yields the given
restrictions on X,S,O, X + ε1, S + ε2. These con-
siderations show that the dynamical properties of
all physically realistic indistinguishable trajecto-
ries are determined by the DA system given in
Lemma 1.

Summarizing, the ID of the bioreactor is repre-
sented by a five dimensional DA system with one
algebraic constraint, i.e. a system evolving on a
four dimensional submanifold of R5. Since in (2)
the oxygen concentration does not influence the
incremental error dynamics it can be excluded
from the ID for the following analysis, and so the
analysis of the ID (2) reduces to an autonomous
three dimensional system (a four dimensional DA
system). However, note that from the dynamics of
ε1 in (2) and the positivity of all system parame-
ters as well as of D∗, it follows immediately that
ε1 → 0 exponentially as t → ∞. This fact allows
to write (2) as a non autonomous DA system:

ΣI





Ẋ = µ(S)X − (D∗ + Kd)X
Ṡ = −C1µ(S)X + D∗(Sin − S)
ε̇2 = ε10e

−γ(t) −D∗ε2
∆ ≡ −bC−1

2 ε10e
−γ(t),

(6)

where γ(t) , (bC−1
2 + Kd)t +

∫ t

0
D∗dτ → ∞.

This shows that the behavior of the ID converges
asymptotically to the autonomous limit system
obtained from (2) when ε1 = 0. The study of the
ID for non pathologic situations reduces to the
analysis of a limit system (Thieme (1994a)), since
the asymptotic behavior of the non autonomous
system (6) coincides with that of the limit system
determined in the following subsection.

3.3 The autonomous limit system

In the following the set of pathologic trajectories
of the plant (1), i.e. for which X(t) = 0, and the
ones that converge asymptotically to them, i.e.
limt→∞X(t) = 0 will be excluded. Note that if
Kd > µ∗ then limt→∞X(t) = 0.

Lemma 2. If the biomass X does not converge to
zero, then the autonomous limit system of (2) is
given by the system in the plane

Σlim





Ẋ = (µ(S)− D̃∗ −Kd)X
ε̇2 = −D̃∗ε2

S =
1
2

(
−ε2 +

√
ε22 + 4KsKi

)

0 ≤ {X, S, S + ε2 D̃∗}.

(7)

This result follows from the fact that (4) can also
be written as

ε1 = X
µ(S)− µ(S + ε2)
µ(S + ε2) + bC−1

2

. (8)

According to this constraint, in the limit ε1 = 0
either X = 0 or µ(S + ε2) − µ(S) = 0 holds.
The first case is excluded as mentioned above.
The second possibility for the limit corresponds
to µ(S) = µ(S + ε2). Due to the positivity of S,
this condition can be rewritten (for the Haldane
growth rate) as

S =
1
2

(
−ε2 +

√
ε22 + 4KsKi

)
. (9)

The bad input signal (5) converges with ε1 → 0
and µ(S) → µ(S + ε2) to the (formally) simpler
form

D̃∗ =
C1µX(2S + ε2)

Sin

[
2S + ε2 − 2KsKi

Sin

] , (10)

where µ denotes here µ(S). The positivity of
X, S, S + ε2 and D̃∗ is a physical requirement.

Further take note of the following result

Lemma 3. If Sin > S∗ then D̃∗ > 0 holds.

This is shown as follows. From the physical re-
strictions it follows that the numerator in (10) is
positive. The denominator on the other hand can
be rewritten, taking into account (9) as

Sin

[√
ε22 + 4S∗2 − 2

S∗2

Sin

]
,

with S∗2 =
√

KsKi as defined above. So the input
signal D̃∗ is positive if it holds

ε22(t) > 4S∗2
(

S∗2

S2
in

− 1
)

.

It turns out that the only possibility to ensure this
condition for all initial values of ε2 is that the term
in parenthesis remains negative, i.e.
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S∗ < Sin = const.. (11)

The condition on Sin is natural considering that
condition µ(S) = µ(S + ε2) signifies that for
ε2 6= 0 the trajectories of the two substrate
concentrations S1 = S and S2 = S+ε2 are moving
in inverse directions in such a way that the growth
rates keep identical in opponent branches, what is
possible only if Sin is greater than the maximum
growth rate, as it holds S ≤ Sin (see 1).

3.4 Analysis of the limit system

This subsection aims to illustrate the following

Lemma 4. If S∗ < Sin and Kd < µ(S∗), then the
trajectories of (7) converge either to X = 0, ε2 ∈
R or to X = µ(S∗)−Kd

C1µ(S∗) (Sin − S∗) and ε2 = 0.

To prove this Lemma, remember that (7) is au-
tonomous and planar. So its stability behavior
can be analyzed using the theorem of Poincaré-
Bendixson. Therefore note, that the only equilib-
ria are X = 0, ε2 ∈ R and the isolated equilibrium
X = µ(S∗)−Kd

C1µ(S∗) (Sin − S∗), ε2 = 0. The positiv-
ity of the second equilibrium for the biomass X
under the condition Sin > S∗ is ensured by the
constraint on the mortality rate Kd < µ(S∗).
Effectively, this equilibrium disappears if this con-
dition does not hold anymore, an interesting and
typical nonlinear phenomenon. Note that if X is
unbounded then D̃∗ → ∞ because of (10) and
thus ε2 → 0. On the other hand a cyclic motion
can not occur as ε2 is non increasing, due to the
– physically motivated and by S∗ > Sin formally
assured – positivity of D̃∗. Thus the trajectories
converge to an equilibrium point.

Note that the autonomous limit system corre-
sponds to the case when the biomass concen-
tration is measured, a particular case studied in
detail in other works (Schaum (2006); Schaum and
Moreno (2006)). The previous result shows that in
this case the bioreactor is detectable (i.e. ε2 → 0),
if the (asymptotically) pathologic trajectories are
excluded.

It is important to point out, that this result does
not permit the ”a priori” conclusion that the
dynamics including the (exponentially vanishing)
biomass concentration (2) is detectable too, as this
depends on the properties of the four dimensional
DA system (6) with solutions in a three dimen-
sional submanifold of the R4. The clarification of
this problem is attacked in the following subsec-
tion.

3.5 Analysis of the asymptotic autonomous system

This subsection aims to clarify the question of
which dynamical observability properties of the
reactor model (1) can be concluded based on the
analysis of the autonomous limit system (7). The
pathologic case as well as situations converging to
it remain excluded. The result is presented in the
following

Proposition 2. If Sin > S∗ as well as Kd < µ(S∗),
then ε1 → 0 as well as ε2 → 0, i.e. system
(1) is detectable if all (asymptotically) pathologic
trajectories are excluded. Further it follows that
S → S∗, i.e. the indistinguishable trajectories
converge to the maximum of the biomass growth
rate.

To prove this a result of Thieme (1992) can be
applied, which relates the asymptotic behavior
of trajectories of asymptotic autonomous systems
(as it is ΣI (2)) to the dynamical characteristics of
the autonomous limit system Σlim (7). The result
of Thieme states the following:

Let ω be the ω-limit set of a forward bounded solu-
tion of ΣI (2). If there exists a neighborhood of ω
which contains at most finitely many equilibria of
Σlim (7), then the following Poincaré-Bendixson
type trichotomy holds (see the Appendix for a
general version):

(i) ω(·) consists of an equilibrium of Σlim, or
(ii) ω is the union of periodic orbits of Σlim

and possibly of centers of Σlim that are
surrounded by periodic orbits of Σlim lying
in ω, or

(iii) ω contains equilibria of Σlim that are cycli-
cally chained to each other in ω by orbits of
Σlim.

Note that this theorem considers only sepa-
rated trajectories (corresponding to the classical
Poincaré-Bendixson result). Note that the equi-
librium corresponding to X = 0 is not isolated
as it represents a whole family of equilibria. Thus
Thieme’s Theorem can not be applied to trajec-
tories moving toward X = 0. Nevertheless the
second equilibrium point corresponding to ε2 = 0
is isolated and thus if there exists a trajectory
which is bounded and not moving toward X =
0, then the Theorem can be applied. It follows
that there is only the possibility of convergent or
cyclical motion. But as has been seen above, the
dynamics (7) can not exhibit cyclic motions due
the non increasing character of ε2. Thus the only
remaining possibility is ε2 → 0. Finally note that
ε2 → 0 itself implies that S → S∗ =

√
KsKi,

i.e. the two substrate concentrations S1 = S and
S2 = S + ε2 move toward each other in such a
way that µ(S1) = µ(S2) holds and they converge
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finally in the maximum argument in S of the
growth rate µ(S).

3.6 Illustrative Simulation

The obtained results are illustrated in a simula-
tion. The bad input signal D∗, the measured out-
put signal, i.e. the dissolved oxygen concentration
evolution over time O(·), as well as two indis-
tinguishable different evolutions of the biomass
and substrate concentrations, X(·) and S(·), re-
spectively, are illustrated. The Figure shows the
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Fig. 2. Simulation results for initial values:
[4000, 120, 1.2]T and [3588.6486, 55, 1.2]T .

behavior of distinct indistinguishable trajectories
of (1) for initial conditions [4000, 120, 1.2]T and
[3588.6486, 55, 1.2]. It displays the existence of the
corresponding bad input with physical meaning.
The fact that there are distinct concentrations
of X and S while input and output signals are
identical illustrates the impossibility of obtaining
a direct estimation of not identical indistinguish-
able trajectories using output error injection in an
observer. The severeness and importance of this
intrinsic dynamical property thus becomes clear.

4. CONCLUSIONS

The mathematical model of a class of aerobic
biological processes is analyzed with respect to its
dynamical properties of observability, i.e. global
observability and detectability. Using a recently
developed method for the dynamical analysis of
global observability properties of general nonlin-
ear systems, based on basic definitions of indis-
tinguishability, it is shown that for any kinetics

the system is not globally observable. Further
the system’s detectability, i.e. the convergence of
all pairs of indistinguishable trajectories to the
same trajectory, is analyzed. It turns out, that
for practically reasonable conditions the system is
detectable.
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Poincaré-Bendixson type results, Diff. and In-
tegral Eq. (7)6, pp.1625-1640, 1994.

Vargas, A., Control de tiempo óptimo para un
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