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Abstract: Protein formation in recombinant protein production cannot yet be modeled in 
a way sufficiently accurate for process supervision and control. Here we propose using a 
new hybrid approach based on mass balances for the state variables involved, where the 
kinetics are represented by artificial neural networks (ANN). We first demonstrate by 
means of simulations that this method works well even when the networks are trained on 
noisy process data. Then, secondly, we show that the method is applicable to real fermen-
tation data. As an accompanying example we use an E.coli culture that produces a recom-
binant protein, namely the green fluorescent protein GFP, which remains dissolved within 
the cytoplasm. For this case the ANN resulted in a concrete relationship between the spe-
cific product formation rate π, the specific growth rate µ and the specific product concen-
tration p/x. The π(µ)-part of the relationship confirms what was obtained with a conven-
tional approach and the additional information about the influence of the specific product 
concentration characterizes the metabolic load of the cell. Copyright © 2007 IFAC 
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1. INTRODUCTION 

Bacterial fermentation is a major workhorse for pro-
ducing recombinant therapeutic proteins; hence, it is 
very desirable to derive optimal fermentation control 
strategies.  

As the mass of product that can finally be purified 
from the culture depends of the amount of biomass x 
employed and their performance, represented by 
their specific product formation rate π, one is inter-
ested in high cell density cultivations with well per-
forming cells (Lee 1996, Riesenberg and Guthke 
1999). In most industrial production systems, both 
factors determining product mass are primarily de-
pendent on the specific biomass growth rate µ. This 
may be trivial for x, but is in most cases also valid 
for π: The growth rate that a particular fermentation 
medium supports, determines the physiological state 

of the cells and particularly the cell’s protein-
synthesizing machinery, and in most industrially 
relevant cases, recombinant protein production is 
under growth rate control (Neidhardt et al. 1990). 
Consequently, much work has been devoted to con-
trolling the specific biomass growth rate in fermenta-
tion processes (Shioya 1992, Yoon et al. 1994, 
Levisauskas et al. 1996, Kim et al. 2004, Picó-Marco 
et al. 2005, Jenzsch et al. 2005, and 2006a, Soons et 
al. 2006). Numerical exploitable models of fermenta-
tion processes for recombinant protein manufacturing 
thus need a sufficiently accurate submodel relating 
the specific growth rate µ to the specific product 
formation rate π, the so-called π-µ-relationship (Pirt 
1993). 

Traditionally, optimal process trajectories have been 
obtained from mechanistic models of the processes 
under consideration (e.g. Levisauskas et al. 2003). 
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The latter can be derived step-by-step where the ac-
tual model version is used to compute the optimal 
process procedure, e.g. in terms of the productivity 
with respect to the product, and improvements of a 
model are deduced from the deviations between the 
predicted values and those measured in a validation 
experiment (Galvanauskas et al. 1997, 2004).  

Here we propose a new alternative to this basic ap-
proach which is purely data-driven. It has the disad-
vantage of needing much data, but the decisive ad-
vantage of not being restricted by unproven model 
assumptions. At running production plants the supply 
of many data records is not a problem at all, hence, 
in these cases, the advantages clearly prevail. 

The method proposed is based on artificial neural 
networks describing the more or less insufficiently 
known process kinetics within a well known set of 
basic mass balance equations. Since such hybrid 
modeling usually suffers from the fact that there are 
no directly measurable data for the key variables, e.g. 
µ and π, we must train the artificial neural networks 
depicting the really interesting kinetic relationships 
indirectly, extending the work of Simutis and Lüb-
bert (1997). We solved this problem by a stepwise 
training of neural networks using online measured 
variables and, additionally, corresponding off-line 
values for the amount of biomass x, and total product 
mass p. The result of this training procedure is a 
π(µ)-profile which can be used for process simula-
tion, and finally in process supervision and control. 

Validation of the model was performed at the exam-
ple of E.coli fermentations, where the soluble GFP, 
the green fluorescence protein was produced in its 
active form within the cells’ cytoplasm.  
 

2. STRUCTURE OF THE DATA-DRIVEN 
MODEL 

2.1 General idea behind the model. 

The backbone of the process model is a classical 
system of mass balance equations for all species, the 
masses of which are changing significantly during 
the cultivation process. The components considered 
here are total biomass x, and total product mass p.  

The first step in modeling the kinetics is representing 
the specific growth rate µ. It can be determined using 
nonlinear relationships in form of an ANN with im-
portant process variables such as carbon dioxide pro-
duction rate (CPR), total biomass x, time after induc-
tion tai , etc.. Also, other online variables can be used 
to strengthen this relation, e.g., the oxygen uptake 
rate, as well as the base fed into the reactor during 
pH control.  

     

This specific growth rate representation can directly 
be used within balance equations determining the 
amount of biomass. In the upper part of Figure 1 this 
procedure is schematically shown. It can be inter-
preted as an ANN-aided software sensor estimating 
the total biomass x. Once this ANN is trained, it can 
supply µ(t)-values for training the a second artificial 
neural network computing π. This procedure is 
shown in the lower part of Figure 1. 

2.2 Training of the artificial neural network system 

Simple feedforward networks are used that map the 
input variables across a hidden layer of 5 nodes (hy-
perbolic tangent) onto a single output variables µ or 
π respectively. As already mentioned, online meas-
urements data (CPR, tai, ...) are used as inputs to-
gether with biomass x and product p, estimated in the 
time step before. For network training we used off-
line measurement data for biomass x as well as total 
product mass p from previously performed experi-
ments.  

Figure 1: Scheme of the proposed procedure for identifi-
cation of the π(µ)-relationship. The artificial neural net-
works (ANN) are feedforward networks with a single 
hidden layer.  

Network training was based on the sensitivity equa-
tions approach (e.g., Schubert et al., 1994). This can 
be applied to train neural networks, which are incor-
porated into differential equation systems of the form  

 )),(( Wtyf
dt
dy

=   (1) 

where W are weights of the neural network, and y are 
process state variables. The training is essentially a 
fit of this equation to experimental offline measure-
ment data for biomass x and product p. Its efficiency 
can be improved if the gradients  can be 
exploited. These gradients satisfy an ordinary differ-
ential equation that can easily be derived from equa-
tion (1) by partial derivatives with respect to the 
weights W.  
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Equation (2) is referred to as the sensitivity equation. 
With the solutions, the Wy ∂∂ /  values, the well 
known neural networks training procedures (back-
propagation, gradient methods, cf. e.g., Rumelhard 
and McClelland 1986) can be applied to train the 
neural network. 

The sensitivity equation approach for specific growth 
rate estimation appears when y is replaced by x, the 
biomass and equation (1) is specified by the equation 
defining the specific growth rate µ  
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In order to determine the sensitivity of the rate of 
change of x with respect to changes in the network 
weights W, equation (3) is partially be differentiated 
with respect to W 
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Eq. (4) can be identified to be an ordinary differential 
equation in ∂x/∂W. This can be solved with the ini-
tial condition ∂x(t=0)/∂W=0, if the sensitivities 
∂µ/∂x and ∂µ/∂W can be supplied. These can easily 
be determined if the structure of the artificial neural 
network is known (Rumelhard and McClelland 
1986). 

Once the µ profile is computed with the first part of 
the model as depicted in Figure 1, it can be used to 
train the network estimating the specific product for-
mation rate π and the product mass p in the second 
part of the model. The approach is essentially the 
same as in the first part. Because values for π are 
also not known beforehand, we once again use the 
sensitivity approach. 

The sensitivity equations for the estimation of π from 
µ are derived from the basic equation 

xW
x
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Again the sensitivities are obtained by partial deriva-
tive of both sides of the equation with respect to the 
network weights Wp: 
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Once again the sensitivity equation (6) can be inter-
preted as an ordinary differential equation that can be 
solved with the initial condition 
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Using values ,  and off line meas-
urements of x and p , the well known back-
propagation and cross-validation procedures can be 
applied to train the network (Leonard and Kramer 
1990, Haykin 1999). 

Wx ∂∂ / pWp ∂∂ /

 
3. TEST SIMULATIONS 

In order to test the proposed procedure it is straight-
forward to first examine it at well defined conditions. 
These can be provided by means of numerical simu-
lations using a model (see Appendix), where a con-
crete π(µ)-relationship is used resembling realistic 
process conditions. Typical results for the π(µ)-
relationship obtained from the simulated fermenta-
tion data are shown in Figure 2. 

The performance criterion was the standard deviation 
σ of the π(µ)-relationship assumed in the model and 
that estimated from the simulated data. 

 J = σ(πmodel-πestimated)  (6) 

The value J of this criterion depends on the quality of 
the data obtained from the process, i.e. on the accu-
racy or noise which corrupts the process and the 
measurement devices. Hence, the data from the 
model were distorted by adding a zero-mean-noise 
component on x, p, and CPR. 

The noise levels were chosen to be 3% of the actual 
values of cpr and x. For the product mass the uncer-
tainty was assumed to be somewhat higher. The 
noise for p ranged from 3-20% of the actual value. 10 
individual simulations were made for each noise lev-
els and the corresponding standard deviations are 
recorded. The results are compiled in Table 1. 
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Figure 2: Estimation of the π(µ) relationship from data 
simulated using a classical model expression (Appendix). 
The noise levels of cpr and x were assumed to be 3% of 
the actual values, 5 % measurement noise was assumed 
for p. Off line measurement values were computed from 
the model with time increments of 1 [h], The standard 
deviation for the estimate of π was determined to be 
σ=0.008 [g/g/h]. 
 

Table 1: Standard deviation as a function of the noise 
level on the product mass p

Relative Noise on p    σ    
5 % 0.008 
7 % 0.0083 

10 % 0.0085 
15 % 0.009 
20 % 0.012 

We can conclude from this investigation that up to 
15% noise in the protein data do not severely influ-
ence the accuracy of the π(µ)-estimate. It should be 
noted that we are speaking about randomly appearing 
measurement errors in the product mass p. A notable 
influence begins above 15% error. However, as 15% 
is a good estimate for the accuracy of protein meas-
urements in our laboratory, the method should work 
in practice. 

Also, the influence of the sampling interval for off-
line measurements on identification quality was 
tested. The result was that the usually taken intervals 
of 0.5 h or 1 h do not lead to different results within 
the accuracy that can be obtained with this method. 
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4. EXPERIMENTAL  

Experimental data were taken from cultivation proc-
esses with a genetically modified E.coli strain that 
produces the well known green fluorescent protein 
(Jenzsch et al. 2006). All experiments were per-
formed with E.coli BL21(DE3) as the host cell. The 
recombinant target protein was coded on the plasmid 
pET 11a and expressed under control of the T7 pro-
moter after induction with isopropyl-thiogalacto-
pyranosid (IPTG). The strain was resistant against 
ampicillin. The product appears in its active (fluo-
rescing) form within the cells’ cytoplasm.  

All the experiments were performed within BBI Sar-
torius System’s BIOSTAT® C 15-L- bioreactor. The 
fermenter was equipped with 3 standard 6-blade 
Rushton turbines that could be operated at up to 
1400 [rpm]. The aeration rate could be increased up 
to 24 [sLpm]. Aeration rate and then stirrer speed 
were increased one after the other in order to keep 
the dissolved oxygen concentration at 25 [%] satura-
tion. 
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Figure 3: Typical examples of the experimental data: The 
full symbols are the offline measurement values. The 
lines are the online estimates obtained from the hybrid 
model. 

 

The fermentations were operated at pH 7 and a tem-
perature of 35 [°C] in the fed-batch mode, starting 
with a volume of 5 [L]. The main C- and energy 
source, glucose, was fed at a concentration of 
400 [g/kg]. For more details the reader is conferred 
to Jenzsch et al. (2006a).  

CO2 in the vent line was measured with MAIHAK’s 
Unor 610®, O2 with MAIHAK’s Oxor 610®. The 
total ammonia consumption during pH control was 
recorded with a balance beneath the base reservoir. 
All these quantities were measured online.  
Biomass concentrations were measured offline via 
optical density at 600 [nm] with a Shimadzu® photo-
spectrometer (UV-2102PC). Glucose was determined 
enzymatically with a YSI 2700 Select Bioanalyzer. 
The product was measured with a spectro-fluorimeter 
(Hitachi F-2500). 

Cultivations were started as fed-batch processes, 
where the substrate was added with an exponential 
feed rate F(t) computed for a fixed set-point µset of 

the specific growth rate. During the biomass forma-
tion phase, the specific growth rate µset was kept at 
0.5 [1/h].  

3. MODEL IDENTIFICATION 

Data records from 29 cultivation runs were used to 
identify the process model described above. The 
biomass estimates, which can directly be compared 
with experimental data, perfectly agree with the 
measurements (Figure 3). The root-mean-square de-
viation was 4 [g] for biomass.  

For the π(µ,p/x)-relationship the result depicted in 
Figure 4 was obtained. It clearly shows that the pre-
ferred specific growth rate for GFP-production is 
0.14 [1/h]. However, the more product becomes ac-
cumulated within the cytoplasm, the lower is the spe-
cific product formation rate π.  
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Figure 4: π(µ,p/x) relationship derived from 29 experi-
ments performed under various culture conditions 

 
 

4. RESULTS AND DISCUSSION 

Previous work on optimizing the operational proce-
dure for recombinant protein manufacturing proc-
esses was based on rather simple assumptions about 
the specific protein formation kinetics. In most cases 
simple formal approaches, e.g., a Luedeking-Piret-
type model assumption was made.  

As heterologous product formation in microbial sys-
tems is an extremely complicated process, generally 
accepted mechanistic models that can be used for 
process supervision and control are not yet available. 
Hence it is straightforward to remove any unproven 
model assumption from determining this kinetics and 
to perform a pure data-driven analysis.  

The π(µ)-relationship resulting from the data analysis 
worked out in this paper has a form that is immedi-
ately convincing. An optimum appears at a relatively 
low specific growth rate µ. This gives the protein 
molecules time to fold correctly. Further, the specific 
product formation rate π drops while foreign product 
is accumulating within the cell’s cytoplasm. This 
seems reasonable in the light of a burden on the cells 
by the product when the latter becomes accumulated 
within the cells.  
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Figure 5: Specific protein concentration profiles 
from 6 fed batch fermentations performed with dif-
ferent specific growth rates after induction at 10 [h]. 

The optimal specific biomass growth rate of 0.14 
[1/h] exactly matches with data taken from a set of 
experiments with the same biological system, where 
µ was controlled to a fixed value during the entire 
production phase (Jenzsch 2006). Results from 6 
experiments performed with different µset-values are 
depicted in Figure 5. Maximal specific protein con-
centrations appear at the same setpoint for µ. Thus, 
these results confirm the optimal specific growth rate 
appearing in Figure 4. 

The procedure proposed to determine the π(µ)-
kinetics in recombinant protein manufacturing proc-
esses is quite easy to apply. Having the sensitivity 
equations (4,6) the training could be performed with 
a relatively simple MATLAB program taking advan-
tage of its curve fitting library routine  
“lsqcurvefit”.  

As can be seen in the scheme depicted in Figure 1, 
once trained, the neuronal networks involved, only 
require online available input signals. They do not 
only supply the π and µ estimates, they also allow to 
estimate the current biomass x and the specific 
growth rate µ as well as the specific product forma-
tion rate π and the total product mass p. Hence, dur-
ing subsequent experiments, this network can be 
applied as a software sensor for these quantities. 

What can be done with the result? The resulting 
model with the biomass and product formation kinet-
ics can be used in numerical optimization proce-
dures. These will lead to optimal µ(t) control func-
tions for these processes. Such profiles could be used 
directly in µ-controlled fermentation runs or, in in-
dustrial manufacturing processes, where the batch-to-
batch reproducibility is an issue, in x- or cpr-
controlled fermentations. 
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7. APPENDIX 

Model used for process simulation 

In order to be able to test the proposed estimation 
procedure one needs process data from which the 
π(µ)-relationship is know beforehand. Only then one 
can determine the accuracy which can be obtained 
with this estimation technique. 

The model used for the simulation study was kept 
very simple. It basically contains only 2 state vari-
ables, the biomass x and the product mass p. 

x
dt
dp

x
dt
dx

π

µ

=

=  

µ is the specific growth rate, and π the specific prod-
uct formation rate. 

It assumes that µ is controlled by adjusting the feed 
rate F of the substrate to the culture accordingly. This 
guarantees that µ is constant for some cultivation 
time interval. After a sufficient amount or mass p of 
product is accumulated within the cells, the meta-
bolic burden to the cell will reduce the growth rate 
below the µset. Hence we assume: 

otherwise

K
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For the π(µ)-relationship we assume a fixed paramet-
ric form which is essentially a bell-shaped function. 
The entire model is formulated by the following 
equation.  

µ
µµ

ππ K
o

e
2)(

max

−
−

=  

Additionally we assume that CPR, the usual carbon 
dioxide production rate can be measured online. To-
gether with the measured culture weight w(t), the 
total CPR-mass  cpr=CPR*w can be determined 
online. This is connected to the state variable x and µ 
by means of a Luedeking-Piret-type relationship. 

xmxYcpr ccx +⋅⋅= µ  

The following model parameters were assumed in the 
simulations 

µmax = 0.55 [1/h];     µo = 0.2 [1/h] ;  Kp =0.05 [g/g];  

Kµ = 0.05 [1/h2];     Ycx=0.6 [g/g],; mc=0.1 [g/g/h];  

πmax = 0.07 [g/g/h];  µset = 0.05-0.45 [1/h] ; 

Trajectories of the simulation of a typical protein 
formation experiment are depicted in Figure 6. The 
simulation was performed under the following condi-
tions: 
1.The initial conditions for solving the balance equa-
tions are x(0)= 0.5; p(0)=0. 
2.The integration time was taken from 0 to 9 h.  
3.Induction was assumed to be at time tind=6 h.  
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Figure 6: Biomass, protein mass and total CPR simulated 
by the model as a function of the cultivation time t. 

 

As the modeling results will be used for testing the 
proposed procedure, the values of the state variables 
are computed for the time instants only where meas-
urement values are usually taken (sampling times). 
For both, x and p sampling intervals of 1 h or 0.5 h 
were assumed. As cpr is an online measurement, 
much shorter sampling time intervals of 0.01 h were 
assumed. 
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