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México D.F., MEXICO. gerardoe@servidor.unam.mx
∗∗∗ Facultad de Ciencias, UASLP, San Luis Potosi, S.L.P.,
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Abstract: In this paper an anti–retroviral supply treatment scheduling for a
dynamical model of the HIV-1 is proposed. This therapy design problem is
approached from an equilibrium point stabilization perspective by viewing the drug
treatment as a control law. The main feature of the proposed controller is threefold,
namely: It exploits the natural properties, for stabilization purposes, of the HIV-
1 model leading to a quite simple structure. It is an output–feedback scheme
in the sense that for achieving the desired stability properties it is not required
neither feedback nor estimation of the unmeasurable state. It is robust against both
parametric and structural uncertainties. The usefulness of the presented control
scheme is illustrated via numerical simulations. Copyright c©2007 IFAC

1. INTRODUCTION

In the last decades, the immunological response
of the body against the Human Immunodeficiency
Virus (HIV) has received a lot of attention from
both an analysis and a therapy design perspec-
tives. Hence, the achieved advances in under-
standing the interaction between the human im-
mune system and the virus are remarkable. This
knowledge has lead, in consequence, to also quite
important results in recognizing the best anti–
retroviral substances for reducing the effect of
the HIV and the way they must be supplied
to infected patients with the aim of improving
their quality of life. Perhaps the most currently
accepted solution is the so–called Highly Active
Anti-Retroviral Therapy (HAART).

1 This work has been done with the financial aid
of DGAPA-UNAM under projects PAPIIT IN112207–3,
IN103306 and CONACYT (grant 51050).

Unfortunately and in spite of the aforementioned
notable results, one of the main drawbacks of the
policies for supplying the medication in present
practice is that they are not completely system-
atized, leading to several undesirable situations,
e.g. medicine waste and cost increment, among
other.

In order to deal with this systematization prob-
lem, one alternative that has given very interest-
ing results is to represent the dynamic behavior of
the disease in terms of a mathematical model to
later on approach the treatment scheduling design
as a control problem, i.e. by viewing the drug sup-
ply policy as a control law. The main limitation
of this approach is that the available models are
based only on the qualitative description of the
major elements evolution involved in the disease,
due to the impossibility for obtaining a treatable
representation that describes the virus behavior in
a complete way. Nevertheless, it is widely accepted
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that the results obtained from this systems theo-
retic approach establish very valuable guidelines
for the medicine practice.

From the control perspective, the treatment sche-
duling design can be viewed as a stabilization
problem. Specifically, for a given dynamical model
the equilibrium points that correspond both to a
healthy and an infected behavior are identified,
then looking at the anti–retroviral supply as a
control input, the objective is to design a control
law that stabilizes the healthy equilibrium point.
The problem is further complicated since actually
it must be formulated as a robust output–feedback
design due to necessity of including several con-
straints imposed by practical considerations about
the disease treatment, namely: it is well known
that there exists a significant uncertainty on the
value of the parameters involved in the available
models since they vary from patient to patient,
although some bounds have been also identified.
Regarding models structure, the qualitative de-
scription of the virus behavior is also (depending
on the chosen model) a source of considerable un-
certainty. Finally and in spite of the fact that some
alternatives are at disposition for measuring the
variables involved in the models (Bentwich, 2005),
the quite high cost for obtaining the CTL count
cells leads to the assumption that this variable can
not be measured.

At this point it is important to remark that the
proposition of a control scheme in this context
must not be considered as a solution that pur-
sues the elimination of the disease, as would be
interpreted the objective of stabilizing the healthy
equilibrium point. Evidently reaching this point in
an infected patient is far from the reality. Instead
of this interpretation, the obtained result must be
considered as a guide that can be followed in the
practical treatment application with the aim to
supply the drug in an efficient way expecting, at
the same time, to minimize the effect of the virus.

Although several mathematical models for the
HIV have been reported and different approaches
have led to a variety of control laws (Perelson
and Nelson, 1999), (Zurakowski and Teel, 2004),
(Campello de Souza, 1999), (Ko et al., 2006),
(Biafore and D’Attellis, 2005), (Brandt and Chen,
2001), (Yadav and Balakrishnan, 2006), (Melgarejo
et al., 2006), (Palacios et al., 2007) the represen-
tation introduced in (Campello de Souza, 1999)
has attracted the attention since it describes in a
precise way the interaction between the immune
system and the HIV-1 inside the body by means
of a relatively simple structure that includes the
evolution of the CD4 T-helper cells, the CTL cells
and the viral load. Paradoxically and in spite of
this simplicity, the reported controllers obtained
using this model show (at some extent) a com-

plex structure, see for example (Ge et al., 2005),
(Culshaw et al., 2004).

The main contribution of this paper is to show
that considering the model presented in (Campello
de Souza, 1999), the problem of stabilizing the
equilibrium point corresponding to a healthy be-
havior can be solved in a quite simple way, without
appealing to complex control algorithms, if the in-
trinsic stability properties exhibited by the system
model are exploited. Actually, it is shown that due
to structure and associated stability properties of
the dynamic equations that describe the behavior
of the CD4 T-helper and the CTL cells, stability
is achieved by only controlling the viral load, via
the drug supply, and leaving to evolve in a natural
way the other variables.

The simplicity of the proposed solution is en-
lightened by the fact that the stabilization ob-
jective is achieved considering both parametric
and structural uncertainties without requiring nei-
ther the feedback nor the estimation of the CTL
cells, according to the practical limitation for mea-
suring this variable. In this sense, the proposed
controller exhibits the required robust output–
feedback structure.

In a technical setting, the control problem is
solved by identifying that the dynamic behav-
ior of the CD4 cells enjoy some Input–to–State
Stability (ISS) properties (Sontag, 2001) while
the corresponding equation for the CTL cells sat-
isfy some Convergence–Input Convergence–State
(CICS) conditions (Sontag, 2003). This scenario
is complemented with the design of a control
law that compensates the destabilizing effect pro-
duced by the viral load on the CD4 cells. The use-
fulness of this controller is numerically validated.

The rest of the paper is organized as follows:
In Section 2 the model considered for the HIV-
1, some of its properties that are useful for the
controller design and the formulation of the ap-
proached problem are presented. The main result
of the paper, together with a detailed discussion
about its structure, are included in Section 3 while
its numerical evaluation is presented in Section 4.
Section 5 is devoted to some concluding remarks.

2. PROBLEM FORMULATION

In this section the problem approached in this pa-
per is presented. First, the considered mathemat-
ical model for the HIV-1 is introduced together
with a brief description and some of its properties.
After this, the control problem is mathematically
formalized in terms of this representation.

It is considered the HIV-1 model, first reported in
(Campello de Souza, 1999), given by
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ẋ1 = α1(x10 − x1)− β1x1x3 (1)

ẋ2 = α2(x20 − x2) + β2x2x3 (2)

ẋ3 = β3x1x3 − β4x2x3 − u (3)

where x1, x2 and x3 are the CD4 T-helper cells,
the CTL cells and the viral load, respectively.
The all positive parameters α1, α2, β1, β2, β3

and β4 are defined in Table 1 while x10 and
x20 stand for the values of x1, x2 corresponding
to a healthy condition. The control input u is
the anti-retroviral treatment pre-established for a
particular patient.

The main feature of model (1)–(3) comes from the
widely recognized fact that it describes in a precise
way the interaction between the immune system
and the HIV-1 inside the body. However, from a
control point of view the complications are evi-
dent, namely, the nonlinear nature of the dynamic
behavior and the underactuated structure of the
system (there are more degrees of freedom than
control inputs). Moreover, it is well known that
there exist limitations for measuring the number
of CTL cells (x2) and that the value of the model
parameters involves a large uncertainty.

Fortunately enough, and in spite of the afore-
mentioned complications, the introduced model
presents some particular properties that are useful
for solving the problem of designing a control
scheme. Some that are particularly important for
developing the proposed control scheme in this
paper are the following:

P.1. The first property is related with the equilib-
ria of the system with no input. It is well-known
that the system has two equilibrium points. The
first one is given by x∗1 = x10, x∗2 = x20, x∗3 = 0
and corresponds to the non infection condition.
The second equilibrium point is

x∗1 =
β2β3α1x10 + β1β4α2x20

β3(β1α2 + β2α1)

x∗2 =
β2β3α1x10 + β1β4α2x20

β4(β1α2 + β2α1)
(4)

x∗3 =
α1α2(β3x10 − β4x20)

β2β3α1x10 + β1β4α2x20

which is obtained by assuming a viral load (x3)
different from zero, i.e. considering that the pa-
tient is infected. Here the CD4 cell count decreases
while the CTL cell count increases with respect to
the noninfected condition.

P.2. Concerning the system parameters, a second
well established property of the model (1)–(3) is
that, although unknown, there exist some limit
values for them. In this sense, the numerical values
included in Table 1 what illustrate are average
values found in infected patients.

P.3. A third important system feature concerns
the fact that its state trajectories are always
positive. This can be easily shown by noting that
the vector field defined by the right hand side
of equations (1)–(3) never points outwards of the
first octant of the Cartesian coordinate system.

P.4. A last characteristic that must be mentioned
is that, besides their positiveness, the CD4 and
CTL count cells trajectories are bounded by the
non infected condition of the patient. Indeed, x1

always describes trajectories under the maximum
value x10 while the trajectories of x2 are bounded
from below by x20.

Once the structure of the model and its properties
have been established, the control problem can be
formulated in the following way:

Consider the HIV-1 model (1)–(3). Assume that

A.1 The only available states are x1 and x3.
A.2 All the system parameters are unknown.

Under these conditions, design a control law u
such that limt→∞(x − x∗) = 0, where x∗ is
equilibrium point that corresponds to a healthy
condition, while preserving the strict positivity of
both the system state and the control input.

3. MAIN RESULT

In this section the main result of the paper is pre-
sented, namely, a Robust Output–feedback con-
trol law that solves the problem formulated in
Section 2.

Before presenting this result in a technical way,
it is interesting to motive the rational behind
its design in terms of the following structural
properties:

• The HIV model can be decomposed into two
subsystems Σ1 and Σ2 composed by equations
(1)–(2) and (3), respectively.

• Looking only at Σ1 it can be noticed that this
subsystem consists of two decoupled equations
that share the same input x3.

• The two equations involved in Σ1 enjoy some
natural stability properties, as will be shown be-
low. The CD4 count cell equation is ISS, by con-
sidering x3 as input and x1 as output, while the
corresponding to the CTL count cells is CICS,
considering again x3 as input. The important
implication of this facts is that if x3 tends to
zero, then x1 and x2 converge to x10 and x20,
respectively, in a natural way.

• Regarding subsystem Σ2, besides the fact that
it directly involves the control input u, it is
possible to see that the dynamic behavior of x3

depends on two terms, one depending on x1 and
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Table 1. Parameters description of HIV model

Parameter Description Value

α1 Death rate of CD4 T-cells 0.25 1/year
β1 Infection rate of CD4 T-cells by HIV 50 ml/107

copies · year
α2 Death rate of CTL cells 0.25 1/year
β2 Growth rate of CTL cells in response 10 ml/107

to HIV load copies · year
β3 Growth rate of HIV load due to 0.01 mm3/

infected CD4 T-cells cells · year
β4 Death rate of HIV load due to CTL cells 0.0045 mm3/

cells · year

other depending on x2. Moreover, due to the
positivity of the state, the x1 dependent term
has a destabilizing effect on x3, i.e. it produces
an increment on the viral load, while the x2

dependent term is a stabilizing one producing a
decrement on x3. Since the control objective is to
steer x3 to zero, then it is clear that the control
input u must only compensate the destabilizing
term.

• It must be noticed that the compensation of
the destabilizing term in subsystem Σ2 can be
achieved without a precise knowledge of the pa-
rameter β3. Actually, this task can be done assum-
ing only that an upper bound of this parameter
is known, since both x1 and x3 are measurable,
providing with a robust structure to the control
law.

• Since the stabilizing, x2 dependent, term does
not need to be neither compensated nor elimi-
nated, the control law does not require knowledge
of the unmeasurable state x2. This fact establishes
the output–feedback structure of the proposed
scheme.

All these conditions are included in the formula-
tion of the main result of this paper and which is
presented in the next

Proposition 1. Consider the HIV-1 model (1)–(3).
Assume that

A.1 The only available states are x1 and x3.
A.2 All the system parameters are unknown ex-

cept β3 which belongs to the set
[
β3, β̄3

]
with

β̄3 known.

Under these conditions the control law given by

u = Kx3 + β̄3x1x3 (5)

guarantee that limt→∞(x − x∗) = 0 where x∗ =
(x10, x20, 0), preserving the strict positivity of
both the system state and the control input.

PROOF. The closed loop system is given by

ẋ1 = α1(x10 − x1)− β1x1x3 (6)

ẋ2 = α2(x20 − x2) + β2x2x3 (7)

ẋ3 =−β4x2x3 +
[(

β3 − β̄3

)
x1 −K

]
x3 (8)

The first important characteristic of this system
that must be noticed is that the proposed control
law does not destroy the positivity of x3 since
preserves the slope field. Thus, due to the fact that
equations for the first two states are the same, the
positivity of x1 and x2 are also preserved.

Consider now the following positive definite func-
tion

V =
1
2
x2

3

whose time derivative along (8) is given by

V̇ = − [
β4x2 −

(
β3 − β̄3

)
x1 + K

]
x2

3

Taking into account that x1 and x2 are positive
for all time, it is clear that it is possible to obtain
that V̇ ≤ −Kx2

3 showing that x3 exponentially
tends to zero.

On the other hand, defining z2 = x2−x20 equation
(7) can be equivalently written as

ż2 = − (α2 − β2x3) z2 + β2x20x3

which can be viewed as a linear time–varying
system with input β2x20x3. Considering first the
case of zero input, the solution of this equation is
given by

z2 = e−
∫ t

0
(α2−β2x3)dτ

x2(0)

From this expression it can be obtained that z2 →
0, i.e. x2 → x20, since
∫ t

0

(α2 − β2x3) dτ = α2t− β2

∫ t

0

x3(τ)dτ →∞

due to the fact∫ t

0

x3(τ)dτ → constant

when x3 exponentially tends to zero. This con-
verge property is preserved when the input is not
zero since it has been shown that this variable
tends exponentially to zero. Hence, equation (7)
is CICS.

The proof is completed by noting that the same
procedure as the one followed for x2 can be
repeated with equation (6) in order to show that
x1 → x10. In this case, however, due to the
negative sign of the input β1x10x3 it is possible to
prove not only CICS but also, considering x3 as
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input and x1 as state, that this equation exhibits
ISS properties. 2

The following remarks are in order about the
presented result:

i) The proposed controller has a quite simple
structure. In fact, the term β̄3x1x3 is not (theo-
retically) necessary, although it is introduced with
the aim of improving the dynamic response of the
closed loop system.

ii) Notice that, besides β3 it is not required
any knowledge on the system parameters. This
feature makes the controller highly robust against
parametric uncertainty.

iii) The purpose of the proposed controller is
compensate the destabilizing term β3x1x3. This
task can be carried out even if there exist some
uncertainty in the structure of this term, i.e. if it
is modeled as a function φ(x1, x3) that depends
on x1 and x3. In this case the control law would
take the form u = Kx3 + φ̄(x1, x3) where the
function φ̄(·) is an upper bound of the term that
must be compensated. This situation allows for
considering also structural uncertainty.

4. SIMULATION RESULTS

The performance of the proposed controller was
investigated via numerical simulations. The par-
ticular values considered for the system param-
eters are shown in Table 1, while the healthy
condition was given by x10 = 1000 cells/mm3 and
x20 = 550 cells/mm3. With the aim to further
enlight the usefulness of the proposed controller,
in Figure 1 the open–loop behavior of the system
is presented when x1(0) = x10, x2(0) = x20 and
x3(0) = 0.1. In this figure it can be noticed how
corresponding to a quite rapid increment of the
viral load, there is a decrement in the CD4 cells
and an increment in the CTL cells. Based on this
graphical description, the control objective is to
reduce the decrement of the CD4 cells and the
increment of the CTL cells while steering the value
of the viral load to zero.

Concerning the behavior of the closed–loop scheme,
in Figure 2 it is depicted the evolution of the viral
load (x3) when x3(0) = 1, and the controller was
tuned considering K = 100 and β̄3 = 0.0125, i.e.
assuming a 25% of uncertainty on this parameter.

It can be noticed how the stabilization objective
on this variable was achieved in a very fast way.
Evidently, once the system is contaminated the
other two state, although also convergent, show a
convergence rate greater than the viral load.

In Figure 3 the CD4 count cells trajectory is
presented while the CTL evolution is illustrated
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Fig. 1. Open–loop behavior of the HIV-1 dynam-
ical model.
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Fig. 2. Closed–loop behavior of the viral load.

in Figure 4. In both figures it is clear that they
spend around 25 years to completely arrive to the
desired value. This period of time is determined by
the natural convergence properties of the systems
given (basically) in terms of α2.

On the other hand, it must be noticed as a
remarkable feature, how the trajectories for x1

and x2 do not considerable diverge from the
healthy equilibrium point. In the case of x1 the
minimum achieved value is around 630 cells/mm3

while for the CTL the maximum value achieved by
this variable is around 605 cells/mm3.
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Fig. 3. Closed–loop behavior of the CD4 count
cells.

With the aim to completely illustrate the con-
troller performance, in Figure 5 it is included
the trajectory described by the control input. As
can be noticed, its convergence to zero is also
achieved very fast, reaching a maximum value of
110 copies/ml.
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5. CONCLUSIONS

In this paper a quite simple controller that
achieves stabilization of the healthy equilibrium
point of a HIV-1 dynamical model is presented.
The considered (third order) model involves as
state variables the evolution of the CD4 T-helper
and the CTL count cells together with the viral
load. The control input is the anti–retroviral treat-
ment scheduling. The simplicity of the controller
is obtained by exploiting the natural stability
properties of the system. Actually, the viral load
is directly (exponentially) stabilized to zero via
the control input, while (due to the natural stable
structure) the other variables evolve to reach the
desired operation conditions in a natural way. The
numerical results show that the control scheme
can produce high performance responses. It is the
authors belief that these results can state a very
valuable guide for the practical medicine applica-
tion.
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