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Abstract: In this paper we propose an optimized adaptive ‘minimal’ modeling
approach for predicting glycemia of critically ill patients and a corresponding
Model based Predictive Control (MPC) setting for controlling glycemia. Re-
estimations of the model, based on a real-life dataset from 19 critically ill patients,
are performed every hour or every four hours by only considering recently passed
data. The contributions of this study are the determination of the best dataset size
for the re-estimations and the proposed MPC design. The results are satisfactory
both in terms of forecasting ability and in qualitative controller performance.
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1. INTRODUCTION

Hyperglycemia (i.e., an increased glucose concen-
tration in the blood) and insulin resistance (i.e.,
the resistance of the glucose utilizing tissues to
insulin) are common in critically ill patients (even
if they have not had diabetes before) and are asso-
ciated with adverse outcomes. Tight glycemic con-
trol (between 80 and 110 mg/dl = target range)
by applying intensive insulin therapy in patients
admitted to the medical and the surgical intensive
care unit (ICU) results in a spectacular reduction
in mortality and morbidity (Van den Berghe et
al., 2006; Van den Berghe et al., 2001).

Currently, ICU patients are treated through a
manual and rigorous administration of insulin
(Van den Berghe et al., 2003). In the avail-
able literature several physical models that de-
scribe the glucose dynamics and the insulin ki-
netics of healthy and diabetic subjects are used

for glycemia control simulations in ‘mathemati-
cal’ diabetic (type I) patients (e.g., (Hovorka et
al., 2004; Parker et al., 1999), among others).
Analogously, we want to design a semi-automated
control system for glycemia control in the ICU.
This system could reduce the workload for medical
staff and could also introduce the glycemia nor-
malization concept in hospitals that are currently
not making use of the manual intensive insulin
protocol (Van den Berghe et al., 2003), world-wide
leading to a possible further reduction of mortality
and morbidity (Van Herpe et al., 2006b).

In this study we present an adaptive ‘minimal’
modeling approach in a Model based Predictive
Control (MPC) setting for normalizing glycemia
in the ICU. Since patients who are admitted to
the ICU significantly differ from diabetic patients
with regards to clinical behavior (Van Herpe et
al., 2006b) a model specifically developed for de-
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scribing the glucose and the insulin dynamics of
ICU patients is estimated and re-estimated as
new measurements are obtained. The design of
the study is described in Section 2 followed by
a discussion of the results in Section 3.

2. MATERIALS AND METHODS

In this section the clinical ICU dataset is de-
scribed. Next, the considered model structure is
introduced, followed by a description of the re-
estimation strategy under study and the MPC
approach.

2.1 ICU Dataset

We used the Glucoday system (A. Menarini Di-
agnostics, Italy), which is a portable instrument
provided with a micro-pump and a biosensor cou-
pled to a microdialysis system, to measure the glu-
cose concentration. After informed consent from
the next of kin, we implanted a microfibre in 19
ventilated adult patients who were admitted to
the surgical ICU of the University Hospital K.U.
Leuven (Belgium) for a variety of reasons (see
Table 1). After implantation of the fibre in the
peri-umbilical subcutaneous tissue, we recorded
near-continuous subcutaneous glucose levels dur-
ing 48 hours. Every 3 minutes the mean value
of the last 3 minutes was exported. During the
first 24 hours, arterial blood glucose was measured
concomitantly every hour using the ABL machine
(Radiometer, Copenhagen, Denmark); during the
next 24 hours, arterial blood glucose was mea-
sured every 4 hours. A 2-point retrospective cal-
ibration was executed at 12 and 20 hours. The
administered flows of carbohydrate calories and
insulin were also stored. It must be stressed that
this near-continuous glucose sensor device was
only used for this study. In current ICU practice,
the used protocol (Van den Berghe et al., 2003)
requires blood glucose levels to be measured every
four hours (or more frequently, especially in the
initial phase or after complications). However, the
use of near-continuous glucose sensor devices will
undoubtedly be standard in the future (Chase
et al., 2006). In this paper the observed near-
continuous glucose test data are only used for (re-)
estimating the model (see 3.1) and for comparing
the proposed MPC insulin infusion scheme with
the control behavior of the nurse (see 3.2).

2.2 ICU Minimal Model (ICU-MM)

The presented model structure originates from
the known minimal model that was developed
by Bergman et al. (Bergman et al., 1981). In
(Van Herpe et al., 2006a) the original minimal
model was extended to the ICU minimal model

Table 1. Patient population.
Variable Value

Male sex - no (%) 13 (68.4)
Age - yr (std− dev) 61.7 (13.8)
Body-mass index - kg/m2 (std− dev) 26.9 (4.7)
Reason for intensive care - no (%)

Cardiac surgery 8 (42.1)
Noncardiac indication 11 (57.9)

Neurologic disease, cerebral
trauma, or brain surgery

3 (15.8)

Abdominal surgery or peri-
tonitis

3 (15.8)

Vascular surgery 2 (10.5)
Thoracic surgery, respiratory
insufficiency, or both

2 (10.5)

Other 1 (5.3)

APACHE II score (1) (first 24 hr) (std− dev) 17.5 (5.6)
Mean glycemia - mg/dl (std− dev) 111 (26)

Minimal glycemia - mg/dl 50
Maximal glycemia - mg/dl 223

(1) The APACHE II score (Acute Physiology and
Chronic Health Evaluation) is a score that determines
the severity of illness.

(ICU-MM) by taking into consideration some fea-
tures typical of ICU patients. The new model was
estimated in-sample by means of a real-life clinical
ICU dataset. The ICU-MM is presented as follows:

dG(t)
dt

= (P1 −X(t))G(t)− P1Gb +
FG

VG
, (1a)

dX(t)
dt

= P2X(t) + P3(I1(t)− Ib), (1b)

dI1(t)
dt

= α max(0, I2)− n(I1(t)− Ib) +
FI

VI
,

(1c)
dI2(t)

dt
= β γ (G(t)− h)− nI2(t), (1d)

where G and I1 are the glucose and the insulin
concentration in the blood plasma. The variable
X describes the effect of insulin on net glucose
disappearance and is proportional to insulin in
the remote compartment. The variable I2 has no
direct clinical interpretation but is required for
mathematical reasons. Gb and Ib are the basal
value of plasma glucose and plasma insulin, re-
spectively. The model consists of two input vari-
ables: the exogenous insulin flow (FI) and the car-
bohydrate calories flow (FG), both intravenously
administered to the patient. The glucose distribu-
tion space and the insulin distribution volume are
denoted as VG and VI , respectively.

The coefficient P1 represents the glucose effec-
tiveness (i.e., the fractional clearance of glucose)
when insulin remains at the basal level; P2 and
P3 are the fractional rates of net remote insulin
disappearance and insulin dependent increase, re-
spectively. The endogenous insulin is represented
as the insulin flow that is released in proportion
(by γ) to the degree by which glycemia exceeds
a glucose threshold level h. The time constant
for insulin disappearance is denoted as n. In case
glycemia does not surpass the glucose threshold
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level h, the first part of 1c (that represents the
endogenous insulin production) equals 0. In order
to keep the correct units, an additional model
coefficient, β = 1 min, is added. Finally, the
coefficient α amplifies the mathematical second
insulin variable I2.

2.3 Adaptive modeling approach

Due to the large inter and intra patient variability
that exists in the ICU (e.g., patient specific initial
and dynamical known input variables, reaction
on medical treatment, time-varying insulin resis-
tance, etc.), it is required to re-estimate the ICU-
MM at frequent time intervals to capture these
dynamic features as much as possible (Van Herpe
et al., 2006b). The first contribution of the current
study is the performance improvement of this re-
estimation process. In general, the adaptive mod-
eling approach can be described as follows:

First of all, the ICU-MM is used as a general
template, which is estimated for each individ-
ual patient (based on the data belonging to the
first 24 hours of each patient’s dataset and lead-
ing to the ‘initial’ model for that patient) such
that the model parameters P1, P2, P3, n, α,
and γ are patient-specific. This is done by min-
imizing the (squared) errors between the simu-
lated and observed glycemia trajectories (by using
non-linear least squares, Matlabr-function ‘fmin-
search’). The simulated glycemia is obtained di-
rectly from the integration of the ICU-MM over
the corresponding time span. In this way, an op-
timization problem is formulated in such a way
that the optimal model parameters are found to
be those that give the best possible simulation for
the patient during the first 24 hours (i.e., 1440
minutes) (Van Herpe et al., 2006a). To solve this
problem the starting parameters are taken from
the obese - low glucose tolerance patient group
coming from (Bergman et al., 1981) (see Table 2)
whose patient characteristics are comparable to
ICU patients.

Secondly, the model is re-estimated at certain
time periods P for the rest of each patient’s
dataset. Two different settings are proposed: re-
estimations every hour and every four hours. The
number of recent data that are considered in
each re-estimation process is called the Back-In-
Time (BIT) number and may influence the per-
formance of the model. Therefore, BIT is var-
ied in each setting. In the re-estimation proce-
dure the same non-linear estimation technique
as described above is applied. The starting pa-
rameters in each optimization process are the
end values of the previous period P . The model
performance for each patient p is measured by

computing the Mean Squared Error, MSEp =∑N

t=1441
(Gt,p−Ĝt,p)2

N , and the Mean Percentage Er-

ror, MPEp =
∑N

t=1441

|Gt,p−Ĝt,p|
Gt,p

N 100%, where Gt,p

and Ĝt,p are the actual and simulated glycemia
value for patient p. The size of each dataset is
denoted as N .

The overall methodology for optimizing the re-
estimation process is explained below:

(1) Estimate the ‘initial’ model (ICU-MM) based
on the first dataset (first 24 hours, see above),

(2) For a re-estimation period P = 1 hour and
P = 4 hours,
(a) For BIT = 20, 18, 16, 14, 12, 10, 8, 6, 5, 4,

3, 2, 1, and 0.5 hours,
(i) Re-estimate the ICU-MM based on

every last section (i.e., BIT) of
the (moving) dataset with start-
ing set of coefficients the values
corresponding to the last period
P (or the set of coefficients from
the ‘initial’ model for the first re-
estimation),

(ii) Predict the glycemic course for the
next period P (which is the valida-
tion set of the re-estimated model
in this case),

(iii) Compute the mean squared error
(MSE) and mean percentage error
(MPE) for all validation sets per
patient,

(b) Compare the MSEs and/or MPEs that
are generated for the different BITs. The
BIT that belongs to the smallest MSE
and/or MPE is called ‘optimal’ and is
ideally used in the re-estimation process,

(3) Compare the optimal BIT and the computed
MSEs and MPEs for the P = 1 hour and
P = 4 hours setting.

2.4 Model based Predictive Control (MPC)

The implementation of Model based Predictive
Control to normalize glycemia in the ICU rep-
resents the second contribution of this study.
MPC gives the advantage to consider the effect
of current and future control moves (i.e., the in-
sulin rates) on the future outputs (i.e, glycemia).
It consists of solving a fixed-size optimal control
problem at each time instant after which only the
first control move (i.e., the insulin rate for the
next time instant) of the optimal input sequence
is applied to the system (i.e., the patient). In this
setting, only the delivered carbohydrate calories
flow is a known disturbance input of the system.
We assume this rate is known for the particular
control horizon (i.e., 4 hours), which is a clinically
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Table 2. Variables, patient features, and
coefficient values applicable in the ICU

minimal model.
Variables Units Variables Units

G mg/dl I2 µU/ml
X 1/min FI µU/min
I1 µU/ml FG mg/min

Patient fea-
tures

Units Value

BM kg Body mass
VG dl BM*1.6
VI ml BM*120
Gb mg/dl Basal glycemia
Ib µU/ml Basal insulin

Coefficients Units Value (1)

P1 1/min -1.31 10−2 (1)

P2 1/min -1.35 10−2 (1)

P3 ml/(min2µU) 2.90 10−6 (1)

h mg/dl 136 (1)

n 1/min 0.13 (1)

α 1/min 3.11
β min 1

γ
µU
ml

dl
mg

min2 5.36 10−3 (1)

(1) As initial value for the model estimation process,
the mean model coefficient values for the obese - low
glucose tolerance patient group (described in (Bergman
et al., 1981)), are used.

feasible condition. As a result, this knowledge can
be incorporated into the optimization problem
leading to pro-active behavior.

The MPC methodology explicitly takes imposed
constraints into account, which classical control
algorithms (Doyle et al., 1992) typically cannot.
For medical reasons the maximum insulin infusion
rate (i.e., the control input) is 50 U/hr. In ad-
dition, the administered insulin flow is obviously
constrained to be positive.

The optimization problem is described as follows:

min
x,u

Jk(x,u) =

P∑

i=1

(xk+i − xk+i,ref)T Q(xk+i − xk+i,ref) (2)

+
M−1∑

i=0

uT
k+iRuk+i,

where x and u denote vector sequences containing
all states respectively inputs within the horizon.
Every state vector xk represents the four states
of the ICU-MM: G, X, I1, and I2. The input
vector uk represents the variables FG and FI . The
design parameters of the MPC are the weighting
matrices Q and R, the control horizon M , and
the prediction horizon P . The discrete time model
used in the MPC is obtained implicitly via in-
tegration of its continuous time counterpart over
piecewise constant inputs with a sampling time of
Ts = 1 min. For reasons of computational com-
plexity time steps of 10 minutes are considered in
the optimization problem.

Numerically the optimization problem is solved in
an SQP fashion (Sequential Quadratic Program)
by means of local linearizations of the ICU-MM.
However, in the simulations the nonlinear format
of the ICU-MM (as presented in 2.2) is used.
The initial value for insulin in each optimization
problem is defined as the rate that is administered
in the last time instant before the new optimiza-
tion. A safety procedure is introduced to restrict
hypoglycemic events by halving this initial value if
a threshold glycemia value of 85 mg/dl is reached.

The MPC control behavior is compared with the
nurse performance assuming the ICU-MM (that
is estimated for each patient individually and
re-estimated every hour to capture the patient’s
changing conditions) fully represents the partic-
ular patient (i.e., without any to the model un-
known disturbance factors). Since we do not know
the exact glycemia evolution when a certain in-
sulin infusion rate, other than the rate determined
by the nurse, would have been administered to the
patient, this analysis is purely qualitative. The
near-continuous glucose values, that were mea-
sured by the Glucoday system, are submitted to
the MPC and the optimization problem is de-
fined every hour by using the one-hour model re-
estimation sets with the optimal BIT (see 2.3).
The adaptation frequency of the insulin rate is
also once per hour and the prediction horizon
equals 4 hours. The flow of carbohydrate calories
that was effectively administered to the patient
serves as (known) disturbance input variable of
the system.

3. RESULTS AND DISCUSSION

In this section the performance of the adap-
tive ‘minimal’ modeling approach is firstly dis-
cussed for both the ‘one-hour-period’ and the
‘four-hours-period’ simulations. This analysis is
followed by a qualitative evaluation of the MPC.

3.1 Adaptive ‘minimal’ modeling performance

Figures 1 and 2 give an overview of the computed
MSEs and MPEs as a function of BIT and P . As
expected, the predictive performance of the model
is higher when the model is re-estimated every
hour (P = 1 hour) in comparison with model re-
estimations every four hours. The optimal BIT
is found to be 4 because of the smallest MSEs
and MPEs in that case. This indicates that it
is advised to incorporate only the data of the
last four hours in the re-estimation process of
the ICU-MM. The average MSE (std-dev) and
average MPE (std-dev) that is obtained when ap-
plying this ‘optimal’ re-estimation strategy (P =
1 hour, BIT = 4 hours) to the present data are
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Fig. 1. Distribution of the MSEs (generated for
each patient) as a function of BIT with re-
estimations every four hours (top panel) or
every hour (bottom panel). The line connects
the averages of the MSEs. Re-estimations
based on the last four hours dataset (BIT =
4) results in the smallest prediction errors.

131.9 mg2/dl2 (99.9 mg2/dl2) and 7.6% (3.1%),
respectively.

These clinically acceptable prediction errors in-
dicate the potential use of the ICU-MM and its
adaptive estimation strategy in the design of a
predictive control system. Indeed, assuming the
availability of an accurate continuous glucose sen-
sor, the use of a model that predicts the glycemia
signal of the next hour can potentially outperform
the control behavior of non-predictive control sys-
tems (e.g., feedback control) and nurse-driven pro-
tocols (Van den Berghe et al., 2003).

3.2 Controller performance

Figure 3 represents the real-life glucose course
of patient no. 12, measured with the Glucoday
system. These real glycemia values are submitted
to the MPC in order to introduce the notion of
feedback. However, we want to stress the fact
that it is infeasible to quantitatively compare the
insulin infusion rates proposed by the MPC with
the flows that were delivered to the patient in
real-life. Indeed, the evolution of the real glycemia
signal when an insulin rate (determined by the
MPC) other than the nurse-driven insulin flow
would have been administrated cannot be known.
Therefore, these simulations are restricted to a
qualitative analysis. It must also be noted that
the nurses made use of the blood glucose values
that were measured with the ABL machine (for
determining the insulin flows) and not the Gluco-
day system since it was required to retrospectively
calibrate the Glucoday data.

During the first three hours the MPC proposes to
infuse a larger insulin rate than was administered

20 18 16 14 12 10 8  6  5  4  3  2  1  0.5

10

20

30

40

50

BIT (hr)

P = 4 hours

M
P

E
 (

%
)

20 18 16 14 12 10 8  6  5  4  3  2  1  0.5

5

10

15

20

25

BIT (hr)

P = 1 hour

M
P

E
 (

%
)

Fig. 2. Distribution of the MPEs (generated for
each patient) as a function of BIT with re-
estimations every four hours (top panel) or
every hour (bottom panel). The line connects
the averages of the MPEs. Re-estimations
based on the last four hours dataset (BIT =
4) results again in the smallest prediction
errors.

in real-life. This proposed flow could have lead
to normoglycemia instead of the hyperglycemic
event that was obtained after administering the
nurse-driven rate. At time t = 240 min the flow
of carbohydrate calories is decreased to 0 mg/min
for 2 hours (because of medical reasons). Since
this input is known to the MPC, the proposed
insulin infusion is significantly decreased as well.
The safety procedure that is introduced to restrict
hypoglycemic events is clearly shown in the next
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Fig. 3. The evolution of the real glycemia signal G
(top panel) of patient no. 12, measured with
the Glucoday system, after administration
of carbohydrate calories FG (middle panel)
and insulin FI (bottom panel, solid line).
The insulin infusion flow that is proposed
by the MPC is presented in the bottom
panel (dashed line) and can be qualitatively
explained.
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phase. Each time the smoothed glycemia signal
reaches the threshold glycemia value (85 mg/dl),
the initial value in the optimization process is
halved (e.g., at time t = 480, 600, and 780 min).
Since the real glycemia signal evolves to the hy-
perglycemic range in the time period that follows,
the insulin rate is again increased each time. At
time t = 900 and 960 min the decrease of the
insulin flow is explained by the reaching of the
threshold level and by the compensation for the
known decrease in flow of administered carbohy-
drate calories.

4. CONCLUSIONS AND FUTURE WORK

In this paper we present an optimized adap-
tive ‘minimal’ modeling approach for predicting
glycemia of critically ill patients and the design
of an MPC for controlling glycemia. Simulations
are performed with respect to a real-life clini-
cal ICU dataset. Re-estimating the model every
hour results in smaller prediction errors than re-
estimations that take place every four hours. The
optimal size of the dataset to be considered in each
re-estimation process of the ICU-MM is found to
be four hours. The use of the optimal adaptive
model strategy (i.e., model re-estimations every
hour based on the patient-specific data of the last
four hours) in an MPC setting gives promising
results. The MPC proposes clinically feasible in-
sulin infusion sequences. Moreover, when compar-
ing the MPC insulin schemes to the nurse-driven
insulin rates that were effectively administered
to the patient, some hyperglycemic and hypo-
glycemic events (that are present in the current
nurse-driven dataset) could have been avoided.

Future work is conducted to the quantitative
analysis of the proposed control strategy and the
implementation of a moving horizon estimator
(MHE) for the estimation of states and unknown
input disturbances. This would allow to explicitly
use the nonlinear dynamics of the model and
to include constraints on states and disturbances
thus potentially leading to a further increase in
performance of the closed-loop control scheme.
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