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Abstract: We present a data mining approach based on a clustering method to
detect and characterize states in a fed-batch processes. This method is based on
the detection of singularities in biochemical signals and on the correlation between
these signals. A segmentation based on maxima of wavelets transform is used to
make an adaptive and dynamical correlation of the signals. The segmentation
enables the detection of the borders of states whereas the correlation enables to
characterize the physiological states. The method is applied successfully on a fed-
batch process and particular states (difficult to detect with classical methods of
classification) are detected and characterized.
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1. INTRODUCTION

Yeasts are a very well-studied micro-organisms
and today, such micro-organism like Saccha-
romyces Cerevisiae are largely used in various
sectors of the biomedical and biotechnology in-
dustrial bioproces. So, this is a critical point to
control such processes. Model-based methods are
the most used tool for the bioprocesses because
of the mathematical modelisation of the phenom-
ena (see (Roels, 1983)), but these methods using
simulation techniques can lead to wrong conclu-
sions because of lack of description parameters or
during an unexpected situation. Nowadays non-
model-based methods have an increasing success
in bioprocesses. The non-model-based methods
are mainly based on the analysis of biochemical
signals (also called biochemical parameters). Two
directions have been explored:

(1) the ”manual” on-line analysis : it does not
allow to identify in an instantaneous manner

and with certainty the physiological state of
the yeast.

(2) the ”manual” off-line analysis : it allows to
soundly characterize the current state, but
generally too late to take into account this
information and to adjust the process on
the fly by actions of regulators allowing to
adjust some critical parameters such that
pH, temperature (addition of basis, heat,
cooling).

To remedy these drawbacks, computer scientists
in collaboration with micro-biologists develop
tools for supervised control of the bioprocess.
They use the totality of informations provided by
the sensors during a set of sample processes to
infer some general rules to which the biological
process obeys (see for example in (Aguilar-Martin
et al., 1999)). These rules (Steyer et al., 1991)
can be used to control the next processes. Clas-
sification, supervised methods, learning and more
generally data mining are also used for these
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bioprocess. For application like batch processes
(where all physiological states are well known),
all these different methods give good results but
for processes as fed-batch, where all the states are
not known very well, it is more difficult to apply
supervised methods. In this paper we present an
unsupervised method whose aim is to detect and
characterize the states of fed-batch process. It is
based on adaptive segmentation and correlation.
A similar approach (Régis et al., 2004) was used to
detect the differences between physiological states
and the command action, but it was not used to
detect all the states in a process. The paper is
organized as follow. In the section 2, we describe
the problem of bioprocess using yeasts. In the
section 3, we present the related work which have
motivated this approach. In the section 4, the
method is presented and first results are presented
in section 5. A conclusion is made in section 6.

2. YEAST PRODUCTION APPLICATION:
EXAMPLE

The methodology has been applied to a biotechno-
logical process. Saccharomyces Cerevisiae is stud-
ied under oxidative regime (i.e. no ethanol pro-
duction) to produce yeast under a laboratory
environment in a bioreactor. Two different pro-
cedures are applied: a batch procedure that is
followed by a continuous procedure. The batch or
fed batch procedure is composed by a sequence
of biological stages. This phase can be thought as
a start-up procedure. Biotechnologists state that
the behaviour in the batch procedure influences
later in induced phenomena in the further phase.
So complete knowledge of the discontinuous phase
is of great importance for the biotechnologist.
The traditional way to get acquainted of such
knowledge is at present carried out through offline
measurements and analysis which most of the
time produce results when the batch procedure
has ended, thus lacking of real time performance.
Instead, the proposed methodology allows for real
time implementation. This example deals with the
batch procedure. Among the set of available on-
line signals the expert chooses the subset of signals
which, according to the expert knowledge contain
the most relevant information to determine the
physiological state:

(1) DOT : partial oxygen pressure in the medium
(2) O2 : oxygen percent in the output gas
(3) CO2 : carbon dioxide percent in the output

gas
(4) pH
(5) OH- ion consumption : derived from control

action of the pH regulator and the index of
reflectivity

The consumption of negative OH ions is evaluated
from the control signal of the pH regulator. The
actuator is a pump, switched by an hysteresis re-
lay, that inoculates a basic solution (NaOH). The
reflectivity, which is measured by the luminance,
seems to follow the biomass density. Nevertheless
its calibration is not constant and depends on the
run.
Our application focus on the evolutive behavior
of a bio-reactor (namely yeast fermentation) that
is to say an evolutive biological system whose
interaction with physical world, described with
pH, pressure, temperature, mixing antifoam ad-
dition, etc..., generates an observable reaction.
This reaction is studied by the way of a set of
sensors providing a large amount of (generally)
numerical data, but, thanks to the logical frame-
work, symbolic data could also be integrated in
the future. For an approach based upon classifica-
tion and fuzzy logic, one can see (Aguilar-Martin
et al., 1999) : this work is devoted to discover
the different states of the bio-reactor but not to
predict its behavior.
In a yeast culture, measures result of biology phe-
nomena and physical mechanisms. That is why
to bring the culture, it is always decisional be-
tween biology and physico-chemical. The biolog-
ical reaction is function of the environment and
an environmental modification will improve two
types of biological responses. The first one is a
quasi steady-state response, the micro-organism
is in equilibrium with the environment. The bi-
ological translation of this state is kinetics of
consummation, production and this phenomenon
is immediate. The second biological response is
a metabolic one, which can be an oxidative or
fermentative mode, or a secondary metabolism.
The characteristic of this response is that the
time constants are relatively long. For cultures,
in term of production, the essential parameters
are metabolism control and performance (produc-
tivity and substrate conversion in biomass yield).
With this goal, the process must be conducted
by a permanent intervention in order to bring
the culture to an initial point to a final point.
This control can be done from acquired measures
on process, which are generally gases. Indirect
measures show the environmental dynamic, which
is shown by gas balance, with respiratory quotient
(RQ) and pH corrector liquid (see figure 1).

Then, there are physical phenomenon, which are
associated to real reactors. These mechanisms can
be decomposed in many categories : transfer phe-
nomenon (mass, thermal and movement quan-
tity), regulation (realised by an operator), intro-
duction of products, and mixing. These mecha-
nisms interfere with biology and it is significant
to notice that relaxation times of these phenom-
ena are of size order of response time of biolog-
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Fig. 1. An example of respiratory quotient evo-
lution during a culture. x-axis is the time of
the experience, y-axis is the amplitude of the
signal

ical response. With all these phenomena, a vari-
able can be described by the following equation
(see (Roels, 1983)) :

dV

dt
= ∆.

(Vequilibrium − V (t)
τphysical

)
+ rV (t) + ΦV (t) (1)

where:

- dV
dt corresponds to the dynamic of the sys-
tem.

- ∆.
(Vequilibrium−V (t)

τphysical

)
is variable variation be-

tween biological and physical parameters.τphysical

is the time constant of physical phenomena;
this constant can not be characterised be-
cause it depends on reaction progress.

- rV (t) is the volumic density of reaction of the
variable V, it is a biological term.

- ΦV (t) corresponds to an external intervention
which results of a voluntary action.

Moreover, it is essential to observe that there
is a regulation loop between biology and physic
(see figure 2). The problematic is, from measures,
to isolate or eliminate perturbations. These re-
sponses depend on physical phenomena or human
interventions (process regulation). It is to quantify
biological kinetics and by this way to optimise
biological kinetics and control that is to say iden-
tify modifications of the biological behaviour. For
example, in the case of yeast production, it is im-
portant to maintain an oxidative metabolism by
the control of glucose residual concentration, fer-
mentative metabolism is prejudicial to the yield.
The aim is to maintain an optimal production to
avoid the diminution of substrate conversion yield,
that is to say to remark the biological change
between oxidative and fermentative metabolism.
We propose to use an unsupervised method using
singularities and correlation in order to detect
and characterize all the phenomena (biological,
regulation, etc.) occurring in a bioprocess.

3. RELATED WORK AND MOTIVATION

Several works using various approaches lead inde-
pendently to each others, to the conclusion that

Fig. 2. Interactions between the biological system,
the process and the operator.

the limits of a states are linked to the singulari-
ties of biochemical signals: for instance, Steyer et
al. (Steyer et al., 1991) (using expert system and
fuzzy logic), Bakshi and Stephanopoulos (Bakshi
and Stephanopoulos, 1994) (using expert system
and wavelets) and Doncescu et al. (Doncescu et
al., 2002) (using inductive logic) show that the
beginning and the end of a state correspond to
singularities of the biochemical signals measured
during the process.
In a fed-batch bioprocess, a physiological state can
occur several times during the experience. After
the detection of states, it is then necessary to
characterize these states. The caracterisation is
often based on the statistical properties of the
biochemical signals. Classification Methods based
on Principal Components Analysis (PCA) (Ruiz
et al., 2004), adaptive PCA (Lennox and Rosen,
2002), and kernel PCA (Lee et al., 2004) en-
ables to distinguish and characterize the different
states.
For the boundaries of the states, we propose
to use the Maximum of Modulus of Wavelets
Transform (Mallat and Zhong, 1992)(Mallat and
Hwang, 1992) to detect the singularities of the
signals. The singularities are selected according
to their Hölder exponent evaluation. The charac-
terisation of the states is based on the correlation
product between the signals on intervalls whose
boundaries are the selected singularities.

4. THE UNSUPERVISED CLUSTERING
METHOD IN DETAILS

4.1 Detection and Selection of singularities by
wavelets and Hölder exponent

The singularities of the biochemical signal cor-
respond to the boundaries of the states. These
signals are non-stationnary and non-symmetrical
signals; they are not chirps and have no infinite os-
cillations (see figure ??). Several authors have pro-
posed to use wavelets to detect the singularities
of the signals for the detection of states: Bakshi
and Stephanopoulos (Bakshi and Stephanopou-
los, 1994) and more recently Jiang et al. (Jiang
et al., 2003). Besides singularities correspond to
maxima of modulus of wavelets coefficients. The
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wavelets are a powerful mathematical tool of non
stationarity signal analysis. Wavelets are very
used in images analysis and compression, but they
know an increasing success in all data processing.
Wavelets Transformation (WT) is a rather simple
mechanism to decompose a function into a set of
coefficients depending on scale and location. The
definition of the wavelets transform is:

Ws,uf(x) = (f ? ψs,u)(x) =
∫

f(x)ψ(
x− u

s
)dx(2)

where ψ is the wavelet, f , is the signal, s ∈ R+∗

is the scale (or resolution) parameter and u ∈ R
is the translation parameter. The scale plays the
role of frequency. The choice of the ψ wavelet is a
complicate task.

A wavelet is a function ψ(t) with a zero average:
∫

ψ(t)dt = 0 (3)

The wavelet is translated and dilated

ψu,s =
1√
s
ψ(

t− u

s
) (4)

allowing it to convolve the analyzed signal which
different size of ”window” wavelet function.For
the detection of the singularities and inflexion
points of the biochemical signal, we use the Max-
ima of Modulus of Wavelets Transform (Mallat
and Zhong, 1992)(Mallat and Hwang, 1992). The
idea is to follow the local maxima at different
scales and the most important will be propagated
from low frequencies to high frequencies. These
maxima correspond to singularities, particularly
when the walevet is a derivative of a smooth
function:

ψ(x) =
dθ(x)
dx

Ws,uf(x) = f ∗ ψs,u = f(x) ∗ dθ(x/s)
dx

Yuille and Poggio (Yuille and Poggio, 1986) have
shown that if the wavelet is a derivative of gaus-
sian, then the maxima belong to connexe curves
which are neverbroken from a scale to other. The
detection of the singularities of the signal is thus
possible by using the wavelets (see for example
figure 3).

Jiang et al. (Jiang et al., 2003) have proposed to
select the maxima by using thresholding. Besides,
all the singularities are not relevant et only somes
singularities are meaningful. However the thresh-
olds proposed by Jiang et al. are chosen empir-
ically. To select the meaningful singularities, we
proposed to use the Hölder exponent. The Hölder
exponent is a mathematical value which enables
to characterize the singularities. The fractal di-
mension enables also to characterize singularities
but only the Hölder exponent can characterize
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Fig. 3. Segmentation of N2 (nitrogen). Each verti-
cal dotted line correspond to a singularity of
the signal detected by wavelets. The wavelet
is a DOG (first derivative of gaussian) and
the scales go from 20 to 23.x-axis is the time
of the experience, y-axis is the amplitude of
the signal.

locally each singularity. A singularity in a point
x0 is characterized by the Hölder exponent (also
called Hölder coefficient or Lipschitz exponent).
This exponent is defined like the most important
exponent α allowing to verify the next inequality:

|f(x)− Pn(x− x0)| ≤ C|x− x0|α (5)

We must remark that Pn(x − x0) is the Taylor
Development and basically n ≤ α(x0) < n + 1.
The Hölder exponent could be extended to the
distribution. For example the Hölder exponent
of a Dirac is −1. A fast computing leads to
a very interesting result of the Wavelets Trans-
form (Jaffard, 1997):

|Ws,uf(x)| ' sα(x0) (6)

This relation is remarkable because it allows to
measure the Hölder exponent using the behavior
of the Wavelets Transform. Therefore, at a given
scale a = 2N the Wa,bf(x) will be maximum in
the neighborhood of the signal singularities. The
detection of the Hölder is linked to the vanish-
ing moment of the wavelet: if n is the vanishing
moment of the wavelet, then it can detect Hölder
coefficient ≤ n (Mallat and Hwang, 1992). We use
a wavelet (DOG: first derivative of gaussian) with
a vanishing moment equal to 1; consequently we
can only detect Hölder coefficient smaller than
1. This is not a real problem because we are
interesting by the singularities as step or dirac
and the Hölder coefficient of these singularities
are smaller than 1. Besides, the meaningful sin-
gularities of the fed-batch bioprocess have Hölder
exponent smaller than 1 which correspond to
sharp singularities. This is this kind of sharp
variation which is meaningful for the fed-batch
bioprocess fermentation because of many external
regulation of the process. Moreover for Hölder
coefficient greater than 1 particularly for integer
values, there are difficulties to interpret the Hölder
coefficient (see (Meyer, 1990) cited in (Mallat and
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Zhong, 1992)). To evaluate the Hölder coefficient
from the wavelets, there is two main ways:

(1) the graphical method. It consists in finding
the maximum line i.e. the maximum which
propagates through the scales, and compute
the slopes of this maximum line (often with a
log-log representation). The computed slope
corresponds to the Hölder coefficient (Mallat
and Hwang, 1992).

(2) the minimisation method. It consists in mini-
mizing a function whose one of the parameter
to evaluate is the Hölder coefficient (Mallat
and Zhong, 1992). The function is the follow-
ing:

∑

j

(
ln2(|sj |)− ln2(C)− j − α(x0)− 1

2
ln2(σ2 + 22j)

)2

(7)

where sj represents the maximum at scale j, C is
a constant depending on the singularity localised
in x0, σ is the standard deviation of an approxi-
mate gaussian of the singularity (see (Mallat and
Zhong, 1992)), and α(x0) the Hölder exponent.

The graphical method is the most fast and the
most used method, but the evaluation of the
Hölder coefficient is sometimes imprecise as noted
in (Struzik, 1999)(Nugraha and Langi, 2002).
For the second method, a priori, all methods
of minimisation can be used for the evaluation.
In (Mallat and Zhong, 1992), a gradient descent
algorithm is proposed to resolved the minimisa-
tion, but this technique is very sensitive to lo-
cal minima. More recently, a minimisation using
Genetical Algorithms has been proposed (Manyri
et al., 2003) and used in bioprocess (Régis et
al., 2004). More precisely it uses Differential Evo-
lutionary (DE) algorithms. The DE algorithms
was introduced by Rainer Storn and Kenneth
Price (Storn and Price, 1996). We use this method
of evaluation by DE to compute the Hölder ex-
ponents for the selection of singularities of the
biochemical signals.

4.2 Characterisation by correlation product and
classification

Once the states are bounded by the detected
and selected singularities using the wavelets, they
are characterized by the analysis of the corre-
lations between the biochemical signals. Tradi-
tionnally, the characterization of the states can
be made by the calculus of the distance between
the different values of the measured biochemical
parameters and the prototypes of the different
classes in supervised cases, or by if-then rules.
The if-then rules describe the relations between
the biochemical parameters with the point of view
of an expert (Steyer et al., 1991)(Steyer, 1991).

We assume that if-then rules can be implicitly
replaced by correlations between the biochemical
parameters which represent the relations between
the biochemical parameters with the point of view
of statistical context. On each intervall defined
by the singularities, a product of correlation is
computed bewteen the signals two by two. The
correlation coefficient (also called Bravais-Pearson
coefficient, see (Saporta, 1990)) is given by the
equation:

1
n

∑n
i=1(xi − x)(yi − y)

σxσy
(8)

where xi represent the values of one parameter
(in a given intervall), yi the values of the second
parameter (in the same intervall), n the number
of elements, x the average of the elements x (of
the first biochemical signal), y the average of the
elements y (of the second biochemical signal), et
σx et σy the standard deviation of each of the two
signals.
The correlation coefficient is equivalent to the
cosinus of the scalar product between two bio-
chemical signals projected in the correlation circle
of a PCA realized between the two biochemical
signals. On each intervall, the sign of each corre-
lation coefficient between two signals is kept. Each
intervall is thus characterized by a set of positive
of negativ signs. The intervalls with the same set
of signs are put in the same class as illustred in
the figure 5. Ruiz et al. (Ruiz et al., 2004) pro-
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Fig. 4. Principle of the classification method based
on wavelets, Hölder exponent and correlation
coefficient

pose a classification method based on PCA for a
neighbouring application (wastewater treatment):
the data are projected in the space generated by
the two first principal components. The method
enables to reduce the size of the space of data and
to take account of the correlation of the signals.
However the PCA doesn’t take account of the
time: the temporal evolution of the process is
not taken into account. Ruiz et al. propose to
use a window of time analysis of fixed size. But
as the window has a fixed size, it doesn’t really
take account of the changs occuring during the
bioprocess. So the method proposed in this article
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seems to be more adapted if it is necassary to take
account of the variation of the process.

5. EXPERIMENTAL RESULTS

Tests have been made on a fed-batch fermenta-
tion bioprocess. This bioprocess is a biotechno-
logical process using yeats called Saccharomyces
Cerevisiae during about 34 hours. 11 biochem-
ical signals have been measued during the bio-
process. The maximum scale is chosen empiri-
cally. Each signals has 2448 samples. Mallat and
Zhong (Mallat and Zhong, 1992) propose to use as
maximal scale log2(N)+1 where N is the number
of measured samples of the signals. However if we
use this maximal scale, several singularities would
be removed. The maximal scale is then chosen
with an expert in microbiology.
The classification providen by the method gives
interesting results. Particularly, the most interest-
ing result concerns the detection and the carac-
terisation of a state resulting of an extern action.
Besides, the class number 8 corresponds to the
addition of an acid 1 in the bioprocess. All the
apparition of class 8 correspond exactly to a the
addition of acid. These results were confirmed and
valited. As far as we know, it is the first time that
this kind of non-model-based can find characterize
automatically the addition of acid in a fed-bacth
process. The results are promising and further
analysis of the classification is necessary.
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Fig. 5. Classification providen by the method. The
wavelet is a DOG and the scales go from 20 to
210.x-axis is the time of the experience, y-axis
is the amplitude of the signal. Above the x-
axis, some of the most important classes are
given, particularly the class number 8.

6. CONCLUSION AND FURTHER WORK

In this paper, we have presented a method of
classification based on wavelets, Hölder exponent

1 because of industrial confidentiality, we are not allowed
to give more information

and coefficient correlation for the detection and
the characterisation of states in bioprocess. The
states detection is based on the detection and the
selection of singularities of the biochemical sig-
nals using the Maximum of Modulus of Wavelets
Transform and the evaluation of Hölder exponent.
The states characterisation is based on coefficient
correlation between signals. Further work include
tests with other kinds of wavelets. The use of the
values of the coefficient correlation instead of the
sign for the characterisation is a way to explore.
The next step is an on-line (real time) classifica-
tion of the bioprocess. This approach is generic
and sould also be used for all others data mining
application using multiple time series: medical
data, genetic data, econometry, etc.

ACKNOWLEDGEMENTS

We want to thank the LBB of INSA-Toulouse
for their help and collaboration. Special thanks
to M. Jacky Desachy for his help on the field of
clustering. This work has been partially supported
by the research office of the Region Guadeloupe,
French West Indies.

REFERENCES

Aguilar-Martin, J., J. Waissman-
Vilanova, R. Sarrate-Estruch and B. Dahou
(1999). Knowledge based measurement fusion
in bio-reactors. In: IEEE EMTECH.

Bakshi, B.R. and G. Stephanopoulos (1994). Rep-
resentation of process trends-III. multiscale
extraction of trends from process data. Com-
puter and Chemical Engineering 18(4), 267–
302.

Doncescu, A., J. Waissman, G. Richard and
G. Roux (2002). Characterization of bio-
chemical signals by inductive logic pro-
gramming. Knowledge-Based Systems 15(1-
2), 129–137.

Jaffard, S. (1997). Multifractal formalism for func-
tions part 1 and 2. SIAM J. of Math. Analysis
28(4), 944–998.

Jiang, T., B. Chen, X. He and P. Stuart (2003).
Application of steady-state detection method
based on wavelet transform. Computer and
Chemical Engineering 27(4), 569–578.

Lee, J.-M., C. Yoo, I.-B. Lee and P. Vanrolleghem
(2004). Multivariate statistical monitoring of
nonlinear biological processes using kernel
PCA. In: IFAC CAB’9. Nancy, France.

Lennox, J. and C. Rosen (2002). Adaptative mul-
tiscale principal components analysis for on-
line monitoring of wastewater treatment. Wa-
ter Science and Technology 45(4-5), 227–235.

344



Mallat, S. and S. Zhong (1992). Characterization
of signals from multiscale edges. IEEE Trans.
on PAMI 14(7), 710–732.

Mallat, S. and W.-L. Hwang (1992). Singularity
detection and processing with wavelets. IEEE
Trans. on Information Theory 38(2), 617–
643.

Manyri, L., S. Regis, A. Doncescu, J. Desachy
and JL Urribelarea (2003). Holder coeffi-
cient estimation by differential evolutionary
algorithms for saccharomyces cerivisiae phys-
iological states characterisation. In: ICPP-
HPSECA. Kaohsiung, Taiwan.

Meyer, Y. (1990). Ondelettes et Opérateurs. Vol. I.
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