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Abstract: In this contribution a cybernetic model and a simple Monod based model were used to simulate the 
control of glucose and ethanol in Saccharomyces cerevisiae fed-batch cultivation. The main objectives were to 
investigate the type of modeling, the choice of the control variable (glucose or ethanol) and the kind of control 
action which is more suitable to control the studied system. It was found that the cybernetic model produces 
better qualitative and quantitative results and also that ethanol control shows a smooth behavior when compared 
to glucose control. According to the results obtained, an on-off control strategy based on ethanol measurements 
was suggested as an easier way to control the system without using effectively a controller. Copyright © 2007 
IFAC 
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1 INTRODUCTION 

It is well know that the set point control of the 
substrate concentration during bioprocesses is a 
matter of particular economic and scientific interest. 
It plays an important role for industrial processes 
such as yeast fermentation or biotransformations in 
general (Johnston et al., 2002; Miskiewicz & 
Kasperski, 2000; Rani & Rao, 1999). Regarding the 
production of yeast, the biomass yield can be raised 
from 20 % to approximately more than 50 % if the 
glucose concentration is kept below a certain level. 
This is due to the fact that yeast changes its 
metabolism from oxidative to oxidative-reductive 
and produces by-products like ethanol and acetate, if 
the substrate concentration is above the critical level 
(Sonnleitner & Käppeli, 1986). However several 
questions arise: 

1. How low should the substrate (glucose) 
concentration be to avoid the production of 
byproducts? 

2. How sensitive is the optimal production rate to 
the glucose concentration? 

3. Which should be the set point concentration 
trajectory to attain the optimal biomass 
production? Is a constant low set point value the 
best solution? 

4. It would not be better to control directly the 
byproduct (i.e., ethanol) concentration instead 
of substrate (i.e., glucose) concentration? 

5. Can a simplified Monod model be used to 
control the system, or a more complex model 
(e.g., cybernetic model) must be applied? 
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6. If few measurements are available, is it possible 
to establish a simple control action profile, 
which could be quite close to the optimal 
control action?  

Here, we intend to answer the above mentioned 
questions based on the simulation and control of two 
different models: cybernetic and a simplified Monod 
based model.  

The paper is structured as follows. Section 2 
describes both models used in our study. In section 3 
the cybernetic model is simulated for two different 
control strategies: glucose and ethanol control. Low, 
middle, and high set point values are considered. 
Section 4 shows the corresponding results for the 
simplified model. Both models are then compared in 
Section 5 analyzing the control action calculated. 
Section 6 finalizes the paper with concluding 
remarks.  

2 MODELS FOR SACCHAROMYCES 
CEREVISIAE CULTIVATION 

2.1 Cybernetic Model (Jones & Kompala, 1999) 
When two growth substrates are available in batch 
culture, microorganisms preferentially consume one 
substrate until completion, followed by an 
intermediate lag phase that precedes consumption of 
the second substrate. It is known that Saccharomyces 
cerevisiae exhibits diauxic behavior when supplied 
with glucose as the only carbon and energy source. It 
has also been shown that the carbohydrates 
accumulate during the growth phase on glucose, but 
are quickly consumed when consumption of ethanol 
begins. Monod’s classical model is clearly not 
sufficient to predict diauxic behavior, because the 
model is not detailed enough to include the dynamics 
of the intermediate lag phase and multiple metabolic 
pathways that are observed during the diauxic growth 
pattern. As a general rule, all unstructured models are 
too simplistic to predict these dynamics accurately, 
as they do not consider the intracellular regulatory 
mechanisms. 

The cybernetic modeling framework is based on the 
hypothesis that microorganisms optimize utilization 
of available substrates to maximize their growth rate 
at all times. The cybernetic modeling framework 
replaces the detailed modeling of regulatory 
processes with cybernetic variables ui and vi 

representing the optimal strategies for enzyme 
synthesis and activity, respectively. For the 
instantaneous growth rate ri values along the three 
available pathways, the optimal strategies for ui and vi 

have been shown (Kompala et al., 1986) as:  
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The growth rates ri values along each pathway are 
modeled according to a modified Monod rate 

equation, with the simple modification that each 
growth rate is proportional to the intracellular 
concentration of ei for a key enzyme controlling each 
pathway: 
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where G, E, and O represent the concentrations of 
glucose, ethanol, and dissolved oxygen, respectively. 
μi represents the modified growth rate constant, Ki 

and Koi values represent the saturation constants for 
the carbon substrate and dissolved oxygen for each 
metabolic pathway. With these growth rate 
equations, the common balance equations for batch 
(dilution rate, D = 0) and fed batch (D ≠ 0) cultures 
can be written as follows: 
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The new state variables X and C represent the cell 
mass concentration and intracellular storage 
carbohydrate mass fraction, respectively. Go, kLa, Y, 
φi, γi, α and β are glucose feed concentration, 
dissolved oxygen mass transfer coefficient, yield 
coefficients, stoichiometric coefficients for different 
substrates, stoichiometric coefficients for 
intracellular storage carbohydrate synthesis and 
consumption, the enzyme synthesis and decay rate 
constants, respectively. 

fV& and samV&  are the feed rate 
and the sample rate. 

Turner and Ramkrishna (1988) have shown that 
including a small constitutive synthesis term for all 
enzymes α* is important in predicting the induction 
of enzymes that have been repressed for long periods 
of time. With the inclusion of the intracellular key 
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enzyme concentration in each rate Eqs. (3) – (5), the 
rate constant μi in these equations is related to the 
experimentally observed maximum specific growth 
rate μi,max according to: 

*
max,

max, αα
βμ

μμ
+

+
= i

ii    (7) 

The parameters were taken from Zhang & Henson 
(2001) and are shown in Table 1. 
 

Table 1. Parameters of cybernetic model. 
Parameter Unit value 

μi,max h-1 0.44, 0.19, 0.36 
Ki g/L 0.05, 0.01, 0.001 
Yi g/g 0.16, 0.75, 0.60 
φi g/g 0.403, 2.0, 1.0, 0.95 

γi g/g 10, 10, 0.8 

α g/g-h 0.3 

α* g/g-h 0.03 

β h-1 0.7 
KO2 mg/L 0.01 
KO3 mg/L 2.2 
KLa h-1 225 
O* mg/L 7.5 

2.2 Simplified Model  
This model is derived from the cybernetic model 
taking off the cybernetic variables and the equations 
of the key enzymes of each pathway. The resulting 
system is composed by the following equations. 
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The values of the parameters were maintained on the 
same level as for the cybernetic model. 

3 CLOSED LOOP CONTROL OF THE 
CYBERNETIC MODEL 

To answer the questions, which have been introduced 
at the beginning of this paper, two different control 
strategies are considered: glucose concentration 

control and ethanol concentration control. In both 
cases the dilution rate ( ) ( )tVtVD f

&=  was used as 
manipulated variable. The control action was 
calculated using standard PI controllers with anti-
windup (i.e., PI=Kp+Ki/s). The controller parameters 
were {Kp=10; Ki=5} for glucose control and {Kp=2; 
Ki=2} for the ethanol control loop. In the next 
subsections we present the results for three different 
set points levels: low, middle, and high. In all 
simulation results, the inlet glucose concentration 
was G0 = 100 g/L.  

3.1 Low set point values 
Fig 1 shows the simulation results using the 
cybernetic model when the glucose is controlled at 
0.0095 g/L. These results are compared with the case 
where ethanol is controlled by 0.01 g/L.  

To make it easier to compare the different results, all 
figures in this paper are structured as follows: (i) 
results shown in solid lines correspond to the case 
where glucose is the control variable and dashed 
lines are for ethanol control case, (ii) the first subplot 
corresponds to the biomass concentration; the subplot 
placed at the right position to ethanol concentration; 
the subplot placed below in the left, the glucose 
concentration; and the last subplot shows the control 
action (i.e., dilution rate D). 
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Fig. 1: Simulation results for glucose (solid blue 

lines) and ethanol (dashed red lines) control. 
The set points were 0.0095 g/L and 0.01 g/L 
for glucose and ethanol, respectively.  

 
When ethanol was the control variable, around 12.5h 
the biomass curve shows a little change in inclination 
as if the cells were changing their metabolism. After 
that, ethanol starts to accumulate but it is rapidly 
consumed and returns to the setpoint value. 
Additionaly there is a reduction in the growth rate. At 
the beginning of the simulation, around 2h, 
something similar has already occurred. These facts 
seem to indicate the change from glucose to to 
ethanol as the main carbon source.  
Based on Fig 1 we can conclude that for low set 
points, controlling the glucose concentration 
automatically assures low ethanol concentration and 
high biomass production.  
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3.2 Middle set point values 
Fig 2 shows the simulation results using the 
cybernetic model when the glucose is controlled at 
0.015 g/L. These results are compared with the case 
where ethanol is controlled at 0.1 g/L.  Note that the 
glucose set point concentration has been increased by 
a factor of 1.57, while the ethanol set point was 
multiplied by a factor of 10. 
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Fig. 2: Simulation results for glucose (solid lines) 

and ethanol (dashed lines) control. The set 
points were 0.015 g/L and 0.1 g/L for glucose 
and ethanol, respectively.  

 

When glucose concentration was being controlled, at 
about 15h the setpoint for glucose control turned to 
be above the critical glucose concentration leading to 
a rapid increase in ethanol. On the other side, when 
ethanol was the control variable one can observe that 
the glucose concentration (even with oscillations at 
the beginning) after 11h fell to a value less than the 
setpoint for glucose. So, when ethanol is the 
controlled variable, the glucose concentration is 
maintained automatically in an interval where the 
oxidative-reductive metabolism is not dominant.  

3.3 High set point values  
To analyze the sensitivity to the set point values, both 
set points have been multiplied by a factor of 2 (i.e., 
0.03 g/L for glucose and 0.2 g/L for ethanol). The 
simulation results are shown in Fig 3.  
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Fig. 3: Simulation results for glucose (solid lines) 

and ethanol (dashed lines) control. The set 

points were 0.03 g/L and 0.2 g/L for glucose 
and ethanol, respectively.  

 

Again the ethanol controlled version was able to 
maintain the glucose concentration at a low 
concentration level, while for the glucose controlled 
loop, the ethanol concentration becomes even higher 
than in the previous case impacting in the final 
biomass production. 
These results clearly show that a system using 
ethanol as controlled variable is much less sensitive 
and more effective than a system controling the 
glucose concentration. When glucose is used as 
controlled variable, small changes can lead to a shift 
in the metabolism, which can change the productivity 
of biomass considerably.  
 

4 CLOSED LOOP CONTROL OF THE 
SIMPLIFIED MODEL 

In this section results are presented for simulations 
employing the simplified model instead of the 
cybernetic model. The control action was calculated 
using standard PI controllers with anti-windup (i.e., 
PI=Kp+Ki/s). In the next subsections we present the 
results for three different set points levels: low, 
middle, and high. In all simulation results, the inlet 
glucose concentration was G0 = 100 g/L.  

4.1 Low set point values 
The controller parameters were {Kp=5; Ki=2} for 
glucose control and {Kp=2; Ki=3} for the ethanol 
control loop. The set points are 0.0004 g/L and 
0.000615 g/L for glucose and ethanol, respectively. 
The simulation results are shown in Fig. 4 clearly 
show a total equivalency between ethanol and 
glucose control, when the simplified model is used 
for low set point control simulations.  
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Fig. 4: Simulation results for glucose (solid lines) 

and ethanol (dashed lines) control. The set 
points were 0.0004 g/L and 0.000615 g/L for 
glucose and ethanol, respectively.  

4.2 Middle set point values 
Fig 5 shows the simulation results using the 
simplified model when the glucose is controlled at 
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0.0008 g/L and ethanol at 1.06 g/L. Note that the 
glucose set point has been increased by a factor of 2, 
while the ethanol set point was multiplied by a factor 
of 1724. The controller parameters were {Kp=10; 
Ki=3} for glucose control and {Kp=0.017; Ki=0.09} 
for the ethanol control loop. 
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Fig. 5: Simulation results for glucose (solid lines) 

and ethanol (dashed lines) control. The set 
points were 0.0008 g/L and 1.06 g/L for 
glucose and ethanol, respectively.  

 

Again the ethanol controlled version was able to 
maintain the glucose concentration at a low 
concentration level, while for the glucose controlled 
loop, the ethanol concentration becomes higher 
starting from 18 h. Nevertheless, the biomass 
concentration is almost the same for both cases.  

4.3 High set point values  
To analyze the sensitivity of the glucose set point 
value, it has been changed to 0.0012 g/L, while the 
ethanol set point was maintained at 1.06 g/L. Fig. 6 
shows the result of these simulations. Again the 
ethanol control has produced a much better result.  

0 10 20 30
0

10

20

30

X
 - 

B
io

m
as

s 
[g

/L
]

0 10 20 30
0

5

10

15

E
th

an
ol

 [g
/L

]

0 10 20 30
0

0.5

1

1.5

2
x 10

-3

G
lu

co
se

 [g
/L

]

Time [h]
0 10 20 30

0

0.02

0.04

0.06

D
ilu

tio
n 

R
at

e 
(C

on
tro

l A
ct

io
n)

 [1
/h

]

Time [h]  
Fig. 6: Simulation results for glucose (solid blue 

lines) and ethanol (dashed red lines) control. 
The set points were 0.0012 g/L and 1.06 g/L 
for glucose and ethanol, respectively.  

 

5 CONTROL ACTION COMPARISON 

Now, it is time to emphasize the differences between 
the cybernetic and simplified Monod models 
concerning their application to bioreactor process 
control. Instead of comparing the controlled (output) 
variables, we will proceed the comparison on base of 
the corresponding calculated control action.  

5.1 Low set point values 
The above subplot of Figure 7 compares the control 
actions calculated when the glucose is controlled 
using the simplified model (dashed line) against 
control action calculated on base of the cybernetic 
model (solid line). On the other hand, the below 
subplot shows the control actions calculated when 
ethanol is the controlled variable. These control 
actions are the same as shown in Figures 1 to 4, and 
correspond to low set point values for glucose and 
ethanol concentrations.  

The main and the most important difference between 
the control actions occures not in the initial part, 
which is related more to the tuning, but in the middle 
time (20 h for glucose control and 13 h for ethanol 
control). The control action calculated by the 
cybernetic model is clearly nonmonotonic.  
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Fig. 7: Control actions calculated for low set point 

values using the simplified model (dashed 
line) and the cybernetic model (solid line)  

 

5.2 High set point values 
For high set point values (Fig. 8), the control action 
pattern calculated by the cybernetic model are 
intensified and anticipated to occurre at 3 h and 2 h 
for glucose and ethanol control, respectively. 
To clarify the difference between the models, Fig 9 
shows the simulation of the cybernetic model (solid 
line) when it is submitted to the control action 
calculated by the simplified model. To make it easier 
to see the difference in these Figures, it is also 
included the prediction obtained with the same 
control action when the simplified model is simulated 
(dashed-dot line). The dashed line is the control 
action calculated using the cybernetic model, while 
the dashed-dot line is the simulated by the simplified 
model with the solid line control action. 
 

337



              

0 5 10 15 20 25 30
0

0.05

0.1
Glucose Control

D
ilu

tio
n 

ra
te

 [1
/h

]

0 5 10 15 20 25 30
0

0.05

0.1
Ethanol Control

D
ilu

tio
n 

ra
te

 [1
/h

]

Time [h]  
Fig. 8: Control actions calculated for high set points 

values using the simplified model (dashed red 
line) and the cybernetic model (solid blue 
line). 
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Fig. 9: Control action calculated using simplified 

model applied to the cybernetic model (solid 
line).  

5.3 Optimal Control Action Design 
Based on the results presented until here, we can 
suggest the following easy way to implement control 
action profile. Fig 10 shows the typical profile.  
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Fig. 10: Suggested control action profile. Solid line 

is ethanol concentration and dashed line, the 
Biomass concentration.  

 
First a high dilution rate is used, when the ethanol 

concentration grows up, the dilution rate is turned to 
0 and set to a final low value when the ethanol 
concentration decreases. This profile is very easy to 
be implemented and, if it works, there is no need to 
use a controller. However, an on-line ethanol 
analyzer like a biosensor must be available. The next 
step is to test this suggestion in a real cultivation. 
 

6 CONCLUSIONS 

In this contribution it was shown that glucose control 
has got a high sensitivity to the set point value, while 
ethanol control shows a smooth behavior. Therefore, 
we recommend controlling the ethanol concentration 
instead of low glucose concentration. In this paper it 
was also demonstrated that a simplified model is not 
able to produce satisfactory qualitative and 
quantitative results. To finalize, the paper has 
presented a quite simple and optimized control 
action. The proposed control action can be easily 
implemented and will be verify in our future work by 
experimental results.  
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