
10th International IFAC Symposium  on
Computer Applications in Biotechnology

 

 
 
 
 
 
 
 
 
 

CONTROL OF A BIOREACTOR WITH SAMPLED 
DELAYED MEASUREMENT 

 
 

García-Sandoval, P.* González-Álvarez, V.* 

Castillo-Toledo, B.** 

 
 

* Department of Chemical Engineering. University of Guadalajara. 
M. García Barragán 1451, 44430, Guadalajara Jalisco, México. 

** CINVESTAV-IPN Unidad Guadalajara. Av. Científica No. 1145, 
44019 Zapopan, Jal., México. 

 
 
 

 
Abstract: A robust regulator for input delayed systems is applied to stabilize a class of 
bioreactors with a sampled delayed measurement, exhibiting partially known nonlinear 
dynamic behavior. An uncertain environment with the presence of unknown inputs is 
considered. This approach is applied on an anaerobic digestion model for the treatment of 
wastewater where the objective is the regulation of the chemical oxygen demand (COD) 
by using the dilution rate as the manipulated variable. Despite large disturbances on the 
input COD and state and parametric uncertainties, this regulation law perform quite well, 
leading the output COD towards its set-point.  Copyright © 2007 IFAC 
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1. INTRODUCTION 

 
The last two decades have seen an increasing interest 
in the application of advanced control techniques to 
the wastewater treatment field since the involved 
processes require careful monitoring in order to 
fulfill the requirements related to water quality and 
ecological norms (Dochain and Vanrolleghem, 
2001). However, the optimal control of wastewater 
treatment processes faces important uncertainties 
arising from the intrinsic complexity of the plant 
design. Moreover, due to the lack of reliable on-line 
sensors and to the complex nature of the process 
inputs, the proper operation and control of these 
processes is a very tedious task (Van Impe et al., 
1998).  In order to control such processes, reliable 
information about the key variables has to be 
available. This information is usually obtained from 
fast and simple measurements (e.g., biogas flowrate, 
biogas composition, pH when dealing with anaerobic 
digestion), however key variables like chemical 
oxygen demand (COD) should be monitored to 
guarantee the waste removal. In one hand, the COD 
measurements on-line are expensive and usually rely 
on the use of soft-sensors based on other 
measurements; in the other hand COD measurements 
with traditional method like laboratory analysis 
implies the acquisition of sampled information 
usually with large time-delay (Gordon, 2005).  

The control with discrete measurement for nonlinear 
systems has been addressed mostly with continuous 
measurement designs followed by ad hoc discrete-
time implementations where the choices of the 
sampling time and gains are resolved with trial and 
error procedures assisted by the knowledge on the 
plant dynamics (Hernández and Alvarez, 2003).  In 
dynamical systems such as biological systems 
(Cushing 1977), time delay arises frequently and can 
severely degrade closed-loop system performance 
and in some cases drive the system to instability. 
Since controllers designed with the assumption of 
instantaneous information may fail to stabilize 
dynamic systems with time delay (Frankl'm et. al., 
1994) it is of paramount importance that delay 
system dynamics be accounted for in the control-
system design process. In addition, it is well known 
that a system with delayed measurements can be 
represented by a system with input delay.   
Recently, has been proposed a linear controller 
(García-Sandoval, 2006) which solves the regulation 
problem for systems with input delay, this class of 
robust regulators is an error feedback controller 
which relies on the existence of an internal model, 
obtained by finding if possible, an immersion of the 
exosystem dynamics into an observable one, which 
allows to generate all the possible steady state inputs 
for the admissible values of the system parameters 
(Castillo-Toledo and Di Gennaro 2002). Thus, this 
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control law is capable of coping with both the lack of 
reliable information and uncertainty. In this paper, 
we propose the application of this approach to the 
single-input-single-output (SISO) regulation of the 
chemical oxygen demand in the output of an 
anaerobic digestion (AD) process using sampled 
delayed measurements where a larger number of 
uncertainties are introduced in the nonlinear func-
tions that describe the kinetics of the process and the 
usefulness of the approach is demonstrated under the 
maximum uncertainty conditions that may character-
rize AD processes. This paper is organized as 
follows, in section 2 we present the robust regulator, 
in section 3 we describe the plant model, and develop 
the particular controller which is tested in section 4 
before some conclusions are drawn. 
 
 

2. BASIC FACTS ON THE REGULATION 
PROBLEM FOR A CLASS OF NONLINEAR 

SYSTEMS WITH IMPUT DELAY 
 
Consider a nonlinear system described by the 
differential equations 

( ) ( ) ( ) ( )( )
( ) ( )( )
( ) ( ) ( )( )

, , ,

, ,

x t f x t u t t

t s t

e t h x t t

τ ω µ

ω ω

ω µ

= −

=

=

 

with the initial conditions 
( ) ( ) [ ]0 , , 0u t σ φ σ σ τ− = ∀ ∈ −  

where x(t) ∈ Ñn and u(t) ∈ Ñ are respectively, the 
state and input variables of the plant, subject to 
disturbances and/or references signals ω(t). Equation 
(2) describes an autonomous exosystem, defined in a 
neighborhood of the origin of Ñs, while e(t) ∈ Ñ 
represents an output tracking error between the 
system output and the reference signal and µ ∈ Ñq is 
a parameters vector which may take values in a 
neighborhood P ⊂ Ñq. We assume that the mappings 
f, s and h are smooth in their arguments and that 
f(0,0,0,0) = 0, s(0) = 0 and h(0,0,0) = 0. 
 
The nonlinear Input Delayed Discrete Robust 
Regulation Problem (IDDRRP) considering that 
there exists an integer m, and a scalar δ such that      
τ = mδ, consists in finding, if possible, a feedback 
dynamic discrete controller with sampling time δ, 
such that, for all admissible parameter values µ, the 
following conditions are satisfied 
 
 (DS) Stability. The solution of the close-loop 

system, without disturbances but with parametric 
variations, at the sampling instants goes 
asymptotically to zero. 

(DR) Regulation. For each initial condition (x(0), 
z(0), ω(0)) in a neighborhood of the origin, the 
solution of the closed-loop system, with 
disturbances and parametric variations, 
guarantees that ( )lim 0

t
e t

→∞
= . 

Remark 1: Because m is an integer, the input delay is 
τ and δ is the sampling time, it means that we have a 
delay equal to m times the sampling period. 

Several results on the stability for the system (1) can 
be found in the literature (see. e.g. Lee et. al. 1994a, 
b) for continuous measurement, but in this work, we 
assume a different scheme to accomplish the 
stabilization requirements for sampled measurement. 
The following assumption is instrumental in the 
solution of the previous problem: 
Assumption A1: To impose that the inputs are 
persistent in time for the tracking problem, the 
equilibrium point ω = 0 is stable in the sense of 
Lyapunov, and the eigenvalues of 

0
sS ω

∂
∂ =

=  are on 
the imaginary axis. 
A sufficient condition for the solution of the 
IDDRRP is presented in the next theorem. 
 
Theorem 2: (Isidori, 1995) Assume that A1 holds. 
Consider that the pairs (A0, B0) and (A0, C0) are 
stabilizable and detectable, respectively, where 

0 0 0 00 0
00 0
00 0

, , ,
xx x

f f hA B C
x u x ωω ω

µµ µ

== =
== =
== =

∂ ∂ ∂
= = =

∂ ∂ ∂
 

are the linearized matrices of system (1)-(3). The 
IDDRRP is solvable if there exist Ck (k ≥ 2), 
mapping xss(t) = π(ω(t),µ), and uss(t − τ) = γ(ω(t),µ), 
with π(0,0) = 0, and γ(0,0) = 0, both defined in a 
neighborhood of (ω,µ) = (0,0), that satisfies the 
equations 

  
( ) ( )( ) ( ) ( )( )

( )( )

,
, , , , ,

0 , , ,

s t f
x
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π ω µ
ω π ω µ γ ω µ ω µ

π ω µ ω µ

∂
=

∂
=

 

In (Isidori and Byrnes, 1990) it has been shown that 
the existence of a solution might be obtained if for 
some set of real numbers, a0, a1, . . . , ar – 1, it holds 
that 

( ) ( )
1

0
, ,

r
r k
s k s

k
L a Lγ ω µ γ ω µ

−

=

= ∑  

where ( ) ( ) ( )
1 ,,

k
sLk

sL sγ ω µ
ωγ ω µ ω

−∂
∂

⎡ ⎤= ⎢ ⎥⎣ ⎦
 k   > 1 with 

( ) ( )0 , ,sL γ ω µ γ ω µ= , for all (ω,µ), and 

0 0

0 0
A I B

C
λ−⎛ ⎞

⎜ ⎟
⎝ ⎠

 

is nonsingular for every λ which is a root of the 
polynomial 

p(λ) = a0 + a1λ + . . . + ar – 1 λr – 1 – λr  
having non-negative real parts, then the IDDRRP is 
solvable by a linear controller. Where the exosystem 
is immersed into a system 

( ) ( )
( )( ) ( ),

t t

t H t

ς ς

γ ω µ ς

= Φ

=
 

where 

( )1

0 1 2 1

0 1 0 0
0 0 1 0

, 1 0 0
0 0 0 1

r

r

H

a a a a

×

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟Φ = =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

and 

( ) ( ) ( ) ( )( )1, , ,
Tr

s st L Lς γ ω µ γ ω µ γ ω µ−= . ■ 
 

(1) 

(2) 

(3) 

(4) 

(5) 
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For the case of not input delay (τ = 0) the discrete 
linear controller, with sampling time δ, presented by 
Castillo and Di Genaro (2002) which solves the 
Robust Regulation Problem has the form 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
[ )

1 0 0 0 1 0 1 1

2 2 0 1 2 2

0 1 2

1

1

,

0,

d d d

d d

j A B K G C j G e j

j G C j j G e j

u j K j He j

t j

θ

ξ ξ

ξ ξ ξ

ξ ξ

θ δ δ

Φ

+ = + − +

+ = − + Φ +

= +

= − ∈

 

where 0
0

AA e δ= , 0
0 00

A
dB e B d

δ λ λ= ∫  and d e δΦΦ =  

are the discretized version of matrices A0, B0 and Φ. 
Remark 3: Controller (6) is compose by an error 
observer (6a), an immersion estimator (6b) and the 
input (6c) can be seen as an hybrid input, because 
contains a discrete error feedback and a continuous 
signal HeΦθ ξ2(j) which incorporates an exponential 
holder HeΦθ. Notice that the signal θ in the 
exponential holder is a periodic sawtooth signal. A 
method of constructing such an exponential holder is 
described in (Castillo and Obregon, 2003). 
Remark 4: In order to construct the controller (6), it 
is not necessary to know neither the continuous 
steady state xss nor the discrete one xdss, but only the 
continuous steady state input uss. However, for 
nonlinear systems, in the particular case of 
polynomials describing function γ(ω,µ), (such as 
triangular systems describing by polynomial terms), 
Φ can be determined without knowing exactly 
γ(ω,µ), but only the maximum degree of the 
polynomial. Another remarkable feature of controller 
(6) is that it is based on the discretized linear part of 
the system description. 
Now the robust controller which solves the IDDRRP 
is presented in the next theorem. 
 
Theorem 5: (García-Sandoval, 2006) Assume 
condition A1 holds and there exists a solution π(ω,µ) 
and γ(ω,µ) for equation (4), where γ(ω,µ) can be 
generated by a linear immersion of the form (5). 
Additionally, assume that the pairs 

( ) ( )0 0
0 0 0, and , 0

0
d d

d d
d

A M
A B C

⎡ − ⎤⎛ ⎞
⎢ ⎥⎜ ⎟Φ⎝ ⎠⎣ ⎦

 

with  
( )0

0 00
, ,A

d dM e B He d e
δ δ λλ δλΦ − Φ= Φ =∫  

are controllable and observable, respectively. 
Assume that for a given integer m the matrix            
Kd = (Kd1 Kd2) , calculated as 

( )
1 0

1
2 0 0 0 0 0

m
d e d

m
d e d d d d d

K K A

K K B A B A B−

=

=
, 

where (Ad0 + Bd0Ke) is Hurwitz, is such that condition 
DS holds and the matrix ( )1 2

TT T
d d dG G G=  makes 

stable the matrix 

( )0 0 1
0

2

0
0
d d d

d d

A M G
C

G
−⎛ ⎞ ⎛ ⎞

−⎜ ⎟ ⎜ ⎟Φ⎝ ⎠ ⎝ ⎠
 

Then, if Gd is calculated assuming that there exists 
matrices Q > 0, Z > 0, R, X, Y, U and V such that the 
LMI's  

( ) ( )
( )

( )
( )

1

1

1,1 2,1
2,1 0

0

0

1,2
0

1, 2

T T T
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⎝ ⎠
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with 
( )

( ) ( )
( ) ( ) ( )
( ) 1

1,1 2

,

1,2 ,

2,1 ,

T

T T T
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T T

R mX Y Y Q mZ

m A Z ZA m C V VC

A R mZ C M mN

Y mA Z

− + + + + +

− + + +

− − −

− −

 

are satisfied for 

( )
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1 2 1

0 0

0

0

1

0 0
0

,
0 0
0 0 0

0 0 0
0 0 0 0

, ,
0 0 0 0
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d z d

z d z d z d

d d

d

i
d
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B K M B K B K

A
A M

M e

A G P U mV

τΦ

⎛ ⎞
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⎜ ⎟−
⎜ ⎟⎜ ⎟Φ⎝ ⎠
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⎜ ⎟
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⎝ ⎠

 

with iP  as the pseudoinverse of the last n + r 
columns of P = R + mZ and  

( )
1

1

0 0 0 1
1 0 0 0

, ,

0 1 0 0

0 0 1 .

z

m m m

z m

M B

b
× ×

×
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⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=

 

Then the IDDRRP for system (1)-(3) is solvable by 
the controller 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 0

0 1 0

2 0

1

1

d d d

d z d

d d

j A j M j M e j m

B b z j G C j e j

j j G C j e j

τξ ξ ς ς

ξ

ς ς ξ

Φ+ = − + −

+ − −⎡ ⎤⎣ ⎦
+ = Φ − −⎡ ⎤⎣ ⎦

 

   
( ) ( ) ( )
( ) ( ) ( ) ( ) [ )

1 2

, 0,
d du j K j K z j

u t He j u j t jθ τ

ξ

ς θ δ δΦ +

= +

= + = − ∈
 

where 

( ) ( ) ( ) ( )( )1 2
T

z j u j u j u j mδ = − − − . ■ 
Remark 6: Controller (8) stabilizes system (1)-(3) 
using a sampled measurement described by e(j) with 
a sampling period equal to δ, while the delay in the 
input is equal to τ. If m > 1 it means that the delay is 
bigger than the sampling time and because m, which 
defines the dimension of matrices M, Bz and bz as 
well as the dimension of the vector z(jδ), must be an 
integer, we must choice the sampling period in order 
to accomplish the equation τ = mδ. 
Despite system (1)-(3) is an input delayed system, it 
is well known that defining the variable 

(7) 

(6b)
(6a)

(6c)

(8b)
(8a)

(8c)

(8d)
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( ) ( )x t x tτ τ= −  and ( ) ( )t tτω ω τ= −  this system 
can be seen as an output delayed system,  

( ) ( ) ( ) ( )( )
( ) ( )( )
( ) ( ) ( )( )

, , ,

, ,

x t f x t u t t

t s t

e t h x t t

τ τ τ

τ τ

τ τ

ω µ

ω ω

τ ω µ

=

=

= −

 

hence we can design a controller for system (9)-(11) 
using the procedure describe in theorem 5 developed 
for system (1)-(3). In this case we obtain a discrete 
controller which regulates system (9)-(11) using a 
sampled delayed output, where delay can be a 
multiple of the sampling delay. 
 
 

3. COD REGULATION 
 
In this section we analyze the system to control and 
we develop a controller for the COD in a wastewater 
AD using the procedure presented in theorem 5, then 
we test this controller via numerical simulation. 
 
 
3.1 The process model. 
 
AD is a multistep biological process in which 
complex organic matter is degraded into a gas 
mixture of CH4 and CO2. It reduces the inlet organic 
matter by using acidogenic bacteria and 
methanogenic archae to produce valuable energy 
(i.e., CH4) (Henze and Harremoës, 1995). When AD 
is performed in continuous biofilm reactors, the 
acidogenic phase can be described by the following 
two ordinary differential equations (Bernard et al., 
2001):  

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )i

X t t t D t X t

t X t
S t D t S t S t

Y

µ α

µ

= −

= − + −
 

where X, S and Si are respectively the concentrations 
of acidogenic bacteria, COD, and inlet COD. The 
parameter α (0 ≤ α ≤ 1) denotes the biomass fraction 
that is retained by the reactor bed, i.e., α = 0 for the 
ideal fixed-bed reactor and α = 1 for the ideal 
continuous stirred tank reactor. Y is the biomass yield 
coefficient for COD degradation. The variable 
D = D(t) ≥ 0 denotes the dilution rate. The specific 
growth rate is given by the highly nonlinear Monod 
equation in which most parameters are badly or 
inadequately known (Van Impe et al., 1998; Dochain 
and Vanrolleghem, 2001): 

( ) ( ) ( )
( ) ( )

max

S

t S t
t

K t S t
µ

µ =
+

 

where µmax and KS are the maximum specific growth 
rate and the half saturation parameter associated with 
S, respectively. Assumptions A2 describe the 
available on-line information while the maximum 
uncertain scenario depicted in the introduction is 
formally stated by hypotheses H1.  
Assumptions A2:  
a) D = D(t) ≥ 0, is measured on-line and is 

supposed to be a persisting input, i.e., 

( )
0

0D dτ τ
∞

>∫ . In addition, D(t) is bounded that 

is, there exist D− and D+ such as D− ≤ D(t)  ≤ D+. 

b) The COD concentration, S(t), the variable to be 
regulated, is measured in a sampled delayed 
manner, with a sampling time δ and a delay         
τ = mδ, i.e.,  

Sm(jδ) = S((j – m)δ), 
 where Sm is the measurement. 
c) The biomass concentration, X cannot be 

measured. 
Hypotheses H1: Typical uncertainties in anaerobic 
digestion processes: 
a) µmax, KS, Y, α and Si are unknown and possibly 

time varying around their nominal value; i.e., 

maxµ̂ , ˆ
SK , Ŷ , α̂  and ˆ

iS , respectively. 
b) Initial conditions on X and S are unknown. 
c) The reference to track is piecewise continue and 

equal to Sr(t). 
 
 
3.2 Controller design. 
 
System (12) together with the sampled delayed 
measurement (14) is similar to system (9)-(11), 
subsequently it can be rewritten as an input delayed 
system with sampled measurement 

( ) ( )( ) ( ) ( )( ) ( )
( ) ( )( ) ( )( ) ( )

( ) ( )

1 1 2 1

2 1 2

1m

x t x t x t x t u t

x t x t u t x t

x j x j

µ ω τ

µ α τ

δ δ

= − + − −

= − −

=

 

where  
 x1(t) = S(t – τ),   x2(t) = X(t – τ)/Y, 
   u(t) = D(t),       ω  = Si(t – τ), 
 x1r(t) = Sr(t) and xm(jδ) = Sm(jδ). 
If we want to track a constant reference, x1r, for the 
COD concentration, then solving the Francis-Isidori-
Byrnes equations (4), the mappings xss(t) = π(ω(t),µ) 
and uss(t − τ) = γ(ω(t),µ) for system (14) are 

( )
( )

( )( ) ( ) ( )

( )
( ) ( ) ( )

1

1 1 1

1 20
2 2

20 1 20

1
2

1

: ,

: ,

, : ,

r

ss r

r
ss x t

r

r
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r

x x

x x
x

x x x e

x
u

x

µ

π ω µ

ω
π ω µ

α ω α

µ
π ω µ γ ω µ

ω

−

= =

−
= =

− − −

= =
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where x20 is the initial conditions for x2. Because x2 is 
time varying, uss so does and it can be generated by a 
nonlinear immersion free of uncertain parameters 
with the form 

( )
1 1 2

2 2 3 1

3 2 3

,
, , , .
,

ς ς ς
ς ς ς γ ω µ ς
ς ς ς

= ⎫
⎪= =⎬
⎪= ⎭

 

However, for large enough time, both mappings, 
π2(ω,µ) and γ(ω,µ) get a constant steady state equal 
to π2(ω,µ) = (ω – x1r)/α and γ(ω,µ) = µ(x1r)/α. At this 
point, the immersion can be described by a linear 
system like equation (5) of dimension one (r = 1) 
with Φ = 0, i.e.,  

( )1 10 , , .ς γ ω µ ς= =  
Additionally, the linear matrices around the nominal 
values for system (14) are 

( ) ( ) ( )
1
ˆ

0 1 01
ˆ

1 1
ˆ , 1 0 ,

0rA x Cα

α

µ
− Θ + −⎛ ⎞

= =⎜ ⎟Θ⎝ ⎠
 

(12)

(13)

(9) 

(10)

(11)

(14)

(14)

(15)
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Table 1: Nominal values and percentage of variations 
for model parameters in the simulation of figure 2. 

 
Parameter Time of  

Change Si µmax KS 1/Y α 
Nominal 10 1.25 4.95 6.6 0.5 
0 ≤ t < 20 40% 30% -20% -30% 25% 

20 ≤ t < 40 20% 30% -20% -30% 25% 
t > 40 20% -10% -10% 30% 25% 

 

( ) ( ) ( )1
2

max 1

ˆ ˆ
0 1 1 ˆ

1
, .

1
rS

r

xK
r r x

B x x µ
µω ω

⎛ ⎞
= − Θ = −⎜ ⎟−⎝ ⎠

 

With theses matrices and the immersion (15) we are 
able to design a linear discrete controller of 
dimension three, as described in theorem 5, in order 
to control the COD concentration. In the next 
subsection we present the application of such 
controller. 
 
 
3.3 Numerical simulations. 
 
In this section we illustrate the features of the robust 
SISO regulation law controlling the COD 
concentration of an anaerobic reactor. We consider 
that we obtain measurements of the COD three times 
at day and each measurement has a delay equal to 
one day. In this case m = 3 and τ = 1 d. Additionally, 
the nominal parameters used are taken from 
(Alcaraz-González et. al., 2000) and reported in 
Table 1.  For this particular case, using the structure 
of controller (8), the discrete controller has the form 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

0 1

3

3

1 1 2 2

ˆ ˆ1

ˆ

1

d

T
d d

T

j j j m Bu j G e j

u j sat j u j

u j u j j

u j K j j K z j

z j u j u j m

ξ ξ ξ

ξ

ξ

ξ ξ

+ = Ψ + Ψ − + +

= +⎡ ⎤⎣ ⎦
= −

= +

= − −

 

Here, because of the bounds of the dilution rate (0.1 
≤ D(t) ≤ 1.5), we have introduced the saturation 
function as an anti-window prevention. The 
numerical values of the matrices are  

0

0.7519 0.0772 1.8373
1.5879 0.9694 1.9568 ,
0.4250 0 1

− − −⎛ ⎞
⎜ ⎟Ψ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

1

0 0 1.8373 1.8373
ˆ0 0 1.9568 , 1.9568

0 0 0 0
B

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟Ψ = − = −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Additionally, the feedback matrix Ke is calculated in 
order to matrix (Ad0 + KeBd0) be Schur, with 
eigenvalues (0.77, 0.1), while matrices Kd1 and Kd2 
are calculated as described in equation (7), obtaining 

( )
( )

1

2

0.3122 0.3904 ,

0.4724 0.3140 0.2344 .
d

d

K

K

=

= −
 

In the other hand, matrix Gd is calculated using the 
LMI equations presented in theorem 5 obtaining 

( )1.1267 1.1478 0.4350 T
dG = − − . 
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Fig. 1. Simulation of close-loop system with sampled 

delayed measurements and nominal values.  
 (a) COD concentrations (actual    , reference    , 
input      and measured  ○  ). (b) Dilution rate. 

 
Results and discussion. To verify the behavior of the 
close-loop system we test the controller without para-
metric variations and disturbances; the results are 
presented in figure 1. As can be seen in the figure 1a, 
the controller shows an excellent performance even 
though the resident time for the COD is approximate-
ly two times the measurement delay. After 12 days 
we impose a reference change and control begins to 
act immediately and approaches to the new reference 
before the first delayed measurement show any 
change. In the other hand, in figure 2 we present a 
comparison of the purposed controller and a PI 
controller with Smith predictor tuned with traditional 
methods (Smith and Corripio, 1997). We test both 
controllers in the face of parametric variations, input 
COD disturbances and reference changes reported in 
table 1. At the beginning of the simulation all the 
parameters are different from their nominal values, at 
time equal to 20 d we introduce a change in the COD 
input concentration and at t = 30 d we impose a 
reference change from 3 to 2 kg m-3; during these 
changes both controllers stabilize the system almost 
with the same response, been the PI a little bit 
slower. However, at t = 40 d we induce a change in 
the kinetic parameters (µmax and KS) and the PI 
controller can not handle this parametric variation. 
As can be seen, with the purpose controller, even 
tough parametric variations up to 40% and delay in 
the measurement, the error approaches to zero. 
Notice in both figures 1b and 2b, that at the 
beginning of the simulation, because of the initial 
error, the dilution rate gets saturation, but controller 

(16)
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is able track the system towards the reference. The 
controller (16) can be easily implemented and when 
there is not saturation, is completely linear. 
 
 

4. CONCLUSIONS 
 
The control of AD is a huge challenge, because of 
the uncertain environment of the process. In addition, 
if we want to control those systems using sampled 
delayed measurements the problem is not trivial. In 
this work, we present a linear discrete controller 
which can be easily implemented. This controller 
shows robustness in face of uncertainties and 
parametric variations. 
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