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Abstract: The aim of this paper is to propose a new Recurrent Neural Network (RTNN) 
topology and a dynamic recursive Levenberg-Marquardt algorithm of its learning capable 
to estimate the states and parameters of a highly nonlinear wastewater treatment 
bioprocess. The proposed RTNN identifier is implemented in a direct adaptive control 
scheme incorporating feedback/feedforward recurrent neural controllers and a noise 
rejecting filter. The proposed control scheme is applied for continuous wastewater 
treatment bioprocess plant model, taken from the literature, where a good convergence, 
noise filtering and a low Mean Squared Error of reference tracking is achieved.  
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1. INTRODUCTION 

 
The rapid growth of available computational 
resources led to the development of a wide number 
of Neural Networks (NN) based modelling, 
identification, prediction and control applications, 
(Narendra, and Parthasarathy, 1990; Hunt et al., 
1992). The main network property namely the ability 
to approximate complex non-linear relationships 
without prior knowledge of the model structure 
makes them a very attractive alternative to the 
classical modelling and control techniques. Among 
several possible network architectures the ones most 
widely used are the Feedforward NN (FFNN) and 
Recurrent NN (RNN). In a FFNN the signals are 
transmitted only in one direction, starting from the 
input layer, subsequently through the hidden layers 
to the output layer, which requires applying a tap 
delayed global feedbacks and a tap delayed inputs to 
achieve a Nonlinear Autoregressive Moving Average 
(NARMAX) neural dynamic plant model. A RNN 
has local feedback connections to some of the 

previous layers. Such a structure is suitable 
alternative to the FFNN when the task is to model 
dynamical systems. NN-based techniques were 
successfully applied in several engineering areas as: 
prediction of chemical process (Su et al., 1992); 
modelling and control of wastewater treatment 
process (Boger, 1992); optimisation of 
polymerisation process in a twin-screw extruder 
reactor and acetic anhydride plant (Geeraerd, et al., 
1998). In (Boskovic, and Narendra, 1995) a 
comparative study of linear, nonlinear and neural-
network-based adaptive controllers for a class of fed-
batch baker’s and brewer’s yeast fermentation is 
done. The paper proposed to use the method of 
neural identification control, given in (Narendra, and 
Parthasarathy, 1990), and applied FFNNs (multilayer 
perceptron and radial basis functions NN). The 
proposed control gives a good approximation of the 
nonlinear plants dynamics, better with respect to the 
other methods of control, but the applied static NNs 
have a great complexity, and the plant order has to be 
known. The application of RNNs could avoid these 
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problems and could reduce significantly the size of 
the applied NNs. In some early papers, (see Baruch, 
et al., 2001, 2002), the state-space approach is 
applied to design a RNN in an universal way, 
defining a Jordan canonical two or three layer RNN 
model, named Recurrent Trainable Neural Network 
(RTNN) and a Backpropagation (BP) algorithm of its 
learning. This NN model is a parametric one and it 
serves as a parameter estimator and a system state 
predictor, which permits to use the estimated 
parameters and states directly for process control. In 
two previous papers (Baruch et al., 2004, 2005) this 
general RTNN approach is applied in direct and 
indirect neural control schemes for identification and 
control of continuous wastewater treatment 
fermentation bioprocess where unfortunately the 
plant and measurement noises affected the control 
precision. In the proposed paper we goes ahead 
applying the RTNN topology for control of the same 
wastewater treatment plant, incorporating a filter in a 
direct RNN control scheme and changing the first 
order learning with a second order one (the recursive 
Levenberg-Marquardt (L-M) algorithm of learning). 
 

 
2. RECURRENT NEURAL NETWORK 

TOPOLOGY AND LEARNING 
 
The process parameters and states are identified 
applying a discrete time model of a Jordan canonical 
RTNN (see Baruch, et al., 2001, 2002), which 
permits to use the estimated states for direct adaptive 
neural control systems design. The Fig. 1 shows  and 
example of SISO RTNN topology. The RTNN has 
the following mathematical description: 
 

( 1) ( ) (X k AX k BU k+ = +  
( ) [ ( )]Z k X kϕ=  
( ) [ ( )]Y k CZ kϕ=  

( );| | 1ii iiA block diag A A= − <  

(1)
(2)

 (3)
(4)

Where: X(.) is a N - state vector; U(.) is a M -input 
vector; Y(.) is a L- output vector, Z(.) is an auxiliar 
vector variable with dimension N; ϕ(.) is a vector -
valued activation function with appropriate 
dimension and hyperbolic tangent elements. 
Equations (1), (2) defined the hidden layer of the 
RTNN and equation (3) - the feedforward output 
layer. The matrix A is the feedback weight matrix of 
the hidden layer, which has a (NxN) diagonal 
structure, where stability conditions (4) are imposed 
on its diagonal elements; the matrices B and C are 
 

 
 
Fig. 1. Recurremt neural network topology (1,2,1). 

(NxM) and (LxN) weight input and output matrices, 
respectively, with structure, corresponding to the 
structure of A. The main advantage of the proposed 
two layers Jordan canonical RTNN architecture is 
that it is an universal hybrid neural model containing 
one feed-forward output layer, and one recurrent 
hidden layer with completely decomposed dynamics, 
as the matrix A is block-diagonal one. Hence, the 
RTNN has a minimum number of parameters and a 
completely parallel structure, as the Jordan canonical 
form is parallel with respect to the autoregressive 
NARMAX sequential model. The RTNN architecture 
is described in a state-space form and serves as a 
one-step ahead state predictor/estimator, therefore it 
is suitable for identification and control purposes. 
The tuning of the network weights is based on the 
recursive Levenberg-Marquardt algorithm, (Ngia and 
Sjoberg, 2000). Here it is applied for RTNN, which 
is derived using a sensitivity model. The general 
updating rule is described by the following equation:  
 

( 1) ( ) ( ) [ ( )] [ ( )]W k W k P k DY W k E W k+ = +  (5)
 
Where: W(.) is the element update of each weight 
matrix A, B, C of the RTNN model; P(.) can be 
interpreted as the covariance matrix of weights 
estimate W(.); DY[W(.)] is the Jacobian matrix 
which is defined as the derivative of the RTNN 
outputs with respect to the weights; finally E[W(.)] is 
the error of approximation; k is the iteration number. 
The approximation error is given by: 
 

[ ( )] ( ) ( )E W k Yp k Y k= −  (6)
 
Where: Yp(.), Y(.) are plant and RTNN outputs. The 
Jacobean matrix includes the corresponding gradient 
components of the outputs with respect to RTNN 
weights, derived as: 
 

[ ( )] ( / ) ( )
{ [ ( )]; [ ( )]; [ ( )]}ij ij ij

DY W k W Y k
DY C k DY A k DY B k

= ∂ ∂ =  (7)

( ) ( )1,[ ( )]ij i jDY C k D k Z k=  (8)

( )1, [ ( )]i i iD k Y kϕ′=  (9)

( ) (2,[ ( )]ij i jDY A k D k X k= )  (10)

( ) (2,[ ( )]ij i j )DY B k D k U k=  (11)

( ) ( )2, 1,[ ( )]i i i i iD k Z k C Dϕ′= k  (12)
 

The P(.) matrix is computed recursively by:  
 

1

1

( ) ( ){ ( 1) ( 1).
. [ ( )] [ ( )] [ ( )] ( 1)}T

P k k P k P k
W k S W k W k P k

α −

−

= − − −

Ω Ω −
 (13)

 
Where: the S(.), and Ω(.) matrices are given as:  
 

[ ( )] ( ) ( ) [ ( )] ( 1) [ ( )]TS W k k k W k P k W kα= Λ +Ω − Ω  (14)

1 4 6

3 6

[ ( )]
[ ( )] ;

0 1

1 0
( ) ;10 10 ;

0

0.97 ( ) 1;10 (0) 10

T
T DY W k

W k

k

k P

ρ
ρ

α

− − −

0
⎡ ⎤

Ω = ⎢ ⎥
⎣ ⎦

⎡ ⎤
Λ = ≤ ≤⎢ ⎥

⎣ ⎦
≤ ≤ ≤ ≤

 (15)
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The matrix Ω(.) has dimension (Nwx2), where Nw is 
the number of weights. The second row of Ω(.) has 
only one unity element (the others are zero). The 
position of that element is computed by: 

 
mod( ) 1;i k Nw k Nw= +  (16)

 
Next, this topology and learning is applied for 
wastewater treatment plant identification and control. 
 
 

3. DIRECT ADAPTIVE NEURAL CONTROL 
SYSTEM DESIGN 

 
The block-diagram of the control system is given on 
Fig. 2. It contains a recurrent neural identifier, two 
neural controllers (feedback and feedforward), and a 
low pass noise filter. Let us to write the following z-
transfer- function representations of the plant, filter, 
feedback and feedforward controllers: 

 

( ) ( )
( ) ( )

( ) ( )

1

1* * *

1

;

;

P P

*

p p

i i i

W z C zI A B

W k C zI A B

P z zI A B

−

−

−

= −

= −

= −

 
(17)

( ) ( )
( ) ( )

1

1

1

2

;c c
f b f b

c c

f b

f f f f

Q z C zI A B

Q z C zI A B

−

−

= −

= − f f

1.

 
(18)

 
The control systems z-transfer functions (17), (18) 
are connected by the following equation, given in z-
operational form: 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

* *
1

2 3

[ ]

.

i
pY z W z W z I Q z P z

Q z R z V z

−= +

+
 

(19)

 
Where V3(.) is a generalized noise term, given as: 
 

( ) ( ) ( ) ( ) ( )*
3 1[ pV z W z W z V z V z= + 2 ]

∞

∞

 (20)
 

The RTNN topology is controllable and observable, 
(see Baruch et al., 2002) and the L-M algorithm of 
learning is convergent (see Ngia and Sjoberg, 2000), 
so the identification and control errors tend to zero: 
 

( ) ( ) ( )* 0;i iE k Y k Y k k= − → →  (21)
( ) ( ) ( )* 0;i iE k Y k Y k k= − → →  (22)

 
This means that each transfer functions given by 
equations (17), (18) is stable with minimum phase. 
 

 
 
Fig. 2. Block - diagram of the control system 

containing neural identifier and two adaptive 
neural controllers. 

From (19), it is seen that the dynamics of the stable 
low pass filter is independent from the dynamics of 
the plant and it does not affects the stability of the 
closed-loop system. The closed-loop system is stable 
and the RTNN-2 feedback controller compensates 
the combined “plant plus filter” dynamics. The 
RTNN-3 feedforward controller dynamics is an 
inverse dynamics of the closed-loop system one, 
which assure a precise reference tracking in spite of 
the presence of process and measurement noises. 

 
 

4. BIOLOGICAL WASTEWATER TREATMENT 
BIOPROCESS DESCRIPTION 

 
4.1 Analytical derivation of the bioprocess model. 
 
Wastewater treatment is performed in an aeration 
tank, in which the contaminated water is mixed with 
biomass in suspension (activated sludge), and the 
biodegradation process is then triggered in the 
presence of oxygen. The tank is equipped with a 
surface aeration turbine, which supplies oxygen to 
the biomass, and additionally changes its suspension 
into a homogeneous mass.  After some period, the 
biomass mixture and the remaining substrate go to a 
separating chamber where the biologic flocks 
(biologic sludge) are separated from the treated 
effluent. The treated effluent is then led to a host 
environment. The maintenance of adequate 
concentration of active biomass in the aeration tank, 
which allows the aerobic degradation of the in-
coming wastewater, is achieved by the recirculation 
of the sludge accumulated in the decanter. The aim is 
good settling of the biomass in the settler and high 
conversion of the entering organic material in the 
bioreactor (see Fig. 3). The concentration of the 
biomass in the recycle stream serves as an indicator 
of both the sludge activity and the sludge settling 
characteristics, and is therefore considered as the 
controlled variable. The main objective of the control 
system is to keep the recycle biomass concentration 
close to the reference signal, and this should be 
achieved in the presence of disturbances and 
measurement noise acting on the recycle flow rate. 
The control task is hampered by the strong 
nonlinearity of the process dynamics, the variations 
in the reaction kinetics and by unknown and possibly 
time-varying process parameters. Since the influent 
flow rate has generally periodic behaviour, the goal 
is not to keep the recycle biomass concentration 
constant, but to follow a desired time trajectory, a 
proportion of the influent flow rate. 
 
Mass balance to the bioreactor. A detailed 
description of all reactions arising in the bioreactor 
would  lead  to  a  high - order  model  of  differential 
 

 
 
Fig. 3. Biological wastewater treatment with settler. 
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equations (see Georgieva, and Ilchmann, 2001). For 
the control strategy developed in this work a 
simplified reduced order model is sufficient, as far as 
it preserves the structural properties of the process, 
(Georgieva, and Ilchmann, 2001). The mass balance 
to the bioreactor is given by the equations: 
 

( ) ( )
( ) ( ) ( ) ( )

( )
( )

in R
d

R
R

F t F t
X t S c t X t

V
F t

X t
V

µ
+⎛= − −⎜ ⎟

⎝ ⎠

+

⎞ +
 (23)

( )1( ) ( ) ( )

( ) ( )
( ),

in
in

in R

F t
S t S X t S

Y V
F t F t

S t
V

µ= − + −

+
−

 (24)

 
Where the state variables are: X(t), biomass 
concentration, which is considered as the total 
amount of the sludge present in the mixed liquor and 
is represented by the Mixed Liquor Suspended 
Solids; S(t), the substrate measured by the Chemical 
Oxygen Demand (COD); V is the reactor volume; FR 
represents the recycle flow rate (manipulated 
variable), Fin is the influent flow rate; Sin is the 
influent substrate concentration (potential 
disturbance, also expressed as COD), and Y>0 is the 
yield coefficient. Here cd X denotes the decay rate of 
the biomass concentration (which is added in the 
model to simulate biomass mortality), with cd > 0, as 
the decay rate parameter and µ(.) denoted the 
specific growth rate, given by the Monod-type 
equation: 
 

)()(
)()(

))((
tStK

tSt
tS

m

m

+
µ

=µ  (25)

 
Where: µm(.) is the maximum growth rate and Km(.) 
is the half-saturation constant of biodegradable 
organic matter which is the substrate concentration 
of µ = µm/2.  
 
Mass balance to the settler. In the mass balance 
derivation it is supposed that none of the biomass is 
left in the effluent Fe of the settler (see Fig. 3), so 
that the whole biomass in the clarifier is settled. The 
dynamics of the concentration of the biomass in the 
settler, XR (t), can be described by the equation: 
 

( ) ( ) ( ) ( )

( ) ( ) ( )

in R
R

S

W R
R

S

F t F t
X t X t

V

F t F t
X t

V

• ⎛ ⎞+
= +⎜ ⎟

⎝ ⎠
⎛ ⎞+

+⎜ ⎟
⎝ ⎠

 (26)

 
Where: FW denotes the waste flow rate and Vs is the 
volume of the settler. Since the settler has first order 
dynamics, which is much faster than the bioreactor 
dynamics, and since we assume that a constant ratio 
of output to input solids concentration is maintained, 
we may approximate the settler behaviour by: 
 

)()()( tXtqtX R =  (27)

Where q(t) is considered as continuously 
differentiable and bounded function with bounded 
inverse, bounded derivative, and q(t) >1 for all . 
The biomass concentration in the settler is higher 
than the biomass concentration in the reactor because 
it accumulates at the bottom of the vessel, and good 
settling is only possible if the settler is designed such 
that X

0≥t

R(t) > X(t). 
 
 
Process measurements. The sensor dynamics is 
modelled by: 
 

( ) ( ) ( ) ( )m m m RT X t X t X t n t
•

= − + +  (28)
 
The bioprocess dynamics is corrupted by some white 
Gaussian noise n(t). The specific model, we consider 
for the simulations, is obtained after substitution of 
XR(t) from (27) into(23) which yields: 
 

( ) {[ ( ) / ( ) [ , ( )]
[ ( ) / ] [ ( ) 1]/ } ( )

R

in d R

X t q t q t t S t
F t V c q t V X t

µ= + −
− − + −

 (29)

( ) [1/ ( )] [ , ( )][1/ ( )] ( )
[ ( ) / ] {[ ( ) ( )] / } ( )

R

in in in R

S t Y t t S t q t X t
F t V S F t F t V S t

µ= − +
+ − +

 (30)

 
Time-varying control reference. The time-varying 
control reference is based on the basic supposition 
that the process input has a diurnal periodicity (see 
Georgieva, and Ilchmann, 2001). Therefore, the 
control objective is to assure that the biomass 
concentration in the recycle flow tracks 
asymptotically a time-varying reference signal, 
proportional to the influent flow rate which is 
assumed to be measurable: 
 

( ) ( )R ref ref inX t k F t=  (31)

 
The specific model considered for process simulation 
is the system of nonlinear differential equations (28), 
(29), (30) and the Monod-type equation (25), with 
constant parameters: V = 1,5.107 [l], Sin = 300 [mg 
COD /l], Tm = 1/12 [h]. The model uncertainties are 
taken into account by introducing:  
 

)3/43/2sin(1.02.0)( π+π+=µ ttm  (32)

)2/sin(3090)( ttKm π+=  (33)
)3/3/sin(1.06.0)( π+π+= ttY  (34)

)6/sin(4)( ttq π+=  (35)
( ))12/sin(52510)( 4 ttcd π+= −  (36)

 
The control objective is to track the reference signal, 
given by the equation (31), where the parameters are:  
 

kref  =3.8*10-3 [mgh/l2] 
( )12/sin25.01103)( 6 ttFin π+∗=  (37)

 
The above data coincide with the typical range for 
domestic wastewater (see Georgieva, and Ilchmann, 
2001). We keep these data for all of the following 
simulations, and the initial conditions are set to:  
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3(0) 8 (mgCOD/l), (0) 11.4*10 (mg/l),
(0) 0 (mg/l)

R

m

S X
X

= =
=

In order to overcome saturation of the RTNNs, the 
output and the input of the plant are scaled by:  
 

( )11400 5700p my X= −  (38)

( )( )5 6*7.5 10 3 10R Conv m stabF U F X K⎡ ⎤⎡ ⎤= × + × −⎣ ⎦⎣ ⎦
(39)

 
Where the scaling parameters are given equal to: 
Kstab= 3*10-3 , Fconv= 0.0038. These scale factors 
correspond to the range of the reference signal. Note 
that the variable U is the bioreactor input control 
signal, generated by one of the proposed control 
algorithms, while FR is the physical process input 
(the recycle flow rate). Analogous, yp is the scaled 
output of the bioreactor, while Xm is the real 
measured output. Consequently, the reference signal 
is also normalised following the same procedure:  
 

( ) 5700/11400)()( −= kXkr Rref
 (40)

 
Substituting (37) into (31), and the obtained result in 
(40), the reference signal is obtained as: 
 

( ) ( )0.5sin 12
kr k π=  (41)

 
The inverse transformation of (38) leads to: 
 

5700 11400m pX y= +  (42)
 
Finally, the substitution of the given up scaling 
parameters and (42) into (39) yields:  
 

( ) 80.5 1.71 10R pF U y= − ×  (43)

 
Note that the recycle flow rate FR is a function of the 
control variable U, computed by the feedback control 
with respect to the estimated state and the 
feedforward control with respect to the reference 
r(k). 
 
 
4.2 Simulation results and discussion. 
 
All simulations are performed using the following set 
of equations: the process description (28), (29), (30); 
the Monod-type equation (25); the time variable 
plant parameters (32) – (36); the plant output scaling 
equation (38); the scaled reference signal equation 
(41); the scaled plant input equation (43). In all 
simulations, a process and measurements noises (see 
Fig. 2), both with variance 1200, are added. The 
variance chosen corresponds to 10% noise on the 
data. The process is simulated over a period of 40 
hours, which gives an idea about its periodic 
behavior (a typical period is about 24 hours) and the 
period of discretization is set to T0=0.01h (it is 1 
hour of the process time). The learning parameter 
used in (14) is α=0.95. The results, obtained from the 
direct adaptive neural control, are given on Fig. 4. 

 

 
 
Fig. 4. Graphical results obtained using Direct 

Adaptive Neural Control. a) Comparison between 
the filtered plant output and the reference signal; 
b) The control signal; c) Comparison between the 
filtered plant output and the reference signal in 
the first 4 hours; d) The same as c), but with 
respect to the unfiltered plant output; e) 
Comparison between the filtered plant output and 
the reference signal in the last 20 hours; f) The 
same as e), but with respect to the unfiltered plant 
output; g) MSE%; h) The two states X of the 
RTNN, obtained from the identification RTNN 
and used for feedback control. 
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The identification RTNN has topology (1, 2, 1). The 
activation functions of the hidden and output 
network layers are hyperbolic tangents. The results 
show a good convergence of the system output to the 
desired trajectory after approximately 2.1 h and a 
good filtration of the noise which makes a MSE% 
reduction up to 1%. 
 
 

5. CONCLUSIONS 
 
In this paper a Recurrent Trainable Neural Network 
model and a dynamic Levenberg-Marquardt learning 
algorithm are proposed to be applied for real time 
identification and state estimation of a nonlinear 
bioprocess plants. The proposed RTNN model has a 
Jordan canonical structure, which permits to use the 
generated vector of estimated states directly for 
process control. The obtained states are used to 
design a feedback direct adaptive control law. The 
direct neural feedback/feedforward control with 
noise filter is able to force the system to track a time-
varying process-dependent reference signal in noisy 
plant conditions. It performs very well under 
restrictive conditions of periodically acting 
disturbances, parameter uncertainties and inevitable 
sensor dynamics. The simulation results, obtained 
with a continuous wastewater treatment bioprocess 
plant model, confirm the applicability of the 
proposed identification and control methodology. 
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